Anticancer activities of chalcone flavokawain B from Alpinia pricei Hayata in human lung adenocarcinoma (A549) cells via induction of reactive oxygen species-mediated apoptotic and autophagic cell death

J Cell Physiol. 2019 Aug;234(10):17514-17526. doi: 10.1002/jcp.28375. Epub 2019 Mar 7.

Abstract

Chalcones found in fruits and vegetables have promising cancer chemopreventive properties. This study attempts to identify the anticancer efficacies of chalcone flavokawain B (FKB) in the rhizomes of Alpinia pricei Hayata by examining key molecular events in non-small-cell lung cancer (A549) cells. Our results indicated that in human A549 cells, FKB (0-15 μg/ml) decreases cell viability and colony formation, dysregulates the Bax:B-cell lymphoma 2 ratio and increases apoptotic DNA fragmentation. Mitochondrial (caspase-9/-3 and poly ADP ribose polymerase [PARP]) signaling was found to be involved in FKB-induced apoptosis. In addition, FKB-induced reactive oxygen species (ROS) generation, and N-acetylcysteine attenuated FKB-induced apoptotic cell death. Moreover, FKB triggered autophagy, as evidenced by the improved acidic vesicular organelle formation, lipidated light chain 3 (microtubule-related light chain 3) accumulation, and ATG7 expression and the decreased mammalian target of rapamycin phosphorylation. Furthermore, FKB suppressed ROS-mediated ATG4B expression. Inhibiting autophagy using 3-methyladenine/chloroquine diminished FKB-induced cell death, indicating that autophagy is triggered as a death mechanism by FKB. In summary, FKB has a crucial role in the execution and propagation of ROS-mediated apoptotic and autophagic cell death of lung adenocarcinoma cells.

Keywords: Alpinia pricei hayata; ROS; apoptosis; autophagy; chalcone flavokawain B.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • A549 Cells
  • Adenocarcinoma of Lung / drug therapy*
  • Adenocarcinoma of Lung / metabolism
  • Adenocarcinoma of Lung / pathology
  • Alpinia
  • Antineoplastic Agents, Phytogenic / pharmacology*
  • Apoptosis / drug effects
  • Autophagic Cell Death / drug effects
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Chalcones / pharmacology
  • DNA Fragmentation
  • Flavonoids / pharmacology*
  • Humans
  • Lung Neoplasms / drug therapy*
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology
  • Microtubule-Associated Proteins / metabolism
  • Proto-Oncogene Proteins c-bcl-2 / metabolism
  • Reactive Oxygen Species / metabolism
  • bcl-2-Associated X Protein / metabolism

Substances

  • Antineoplastic Agents, Phytogenic
  • BAX protein, human
  • BCL2 protein, human
  • Chalcones
  • Flavonoids
  • MAP1LC3A protein, human
  • Microtubule-Associated Proteins
  • Proto-Oncogene Proteins c-bcl-2
  • Reactive Oxygen Species
  • bcl-2-Associated X Protein
  • flavokawain B