Mechanism of ribonuclease A endocytosis: analogies to cell-penetrating peptides

Biochemistry. 2011 Oct 4;50(39):8374-82. doi: 10.1021/bi2009079. Epub 2011 Sep 7.

Abstract

Pancreatic-type ribonucleases can exert toxic activity by catalyzing the degradation of cellular RNA. Their ability to enter cells is essential for their cytotoxicity. Here, we determine the mechanism by which bovine pancreatic ribonuclease (RNase A) enters human cells. Inhibiting clathrin-dependent endocytosis with dynasore or chlorpromazine decreases RNase A-uptake by ~70%. Limited colocalization between RNase A and transferrin indicates that RNase A is not routed through recycling endosomes. Instead, vesicular staining of RNase A overlaps substantially with that of nona-arginine and the cationic peptide corresponding to residues 47-57 of the HIV-1 TAT protein. At low concentrations (<5 μM), internalization of RNase A and these cell-penetrating peptides (CPPs) is inhibited by chlorpromazine as well as the macropinocytosis inhibitors cytochalasin D and 5-(N-ethyl-N-isopropyl)amiloride to a similar extent, indicative of common endocytic mechanism. At high concentrations, CPPs adopt a nonendocytic mechanism of cellular entry that is not shared by RNase A. Collectively, these data suggest that RNase A is internalized via a multipathway mechanism that involves both clathrin-coated vesicles and macropinosomes. The parallel between the uptake of RNase A and CPPs validates reference to RNase A as a "cell-penetrating protein".

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amiloride / analogs & derivatives
  • Amiloride / pharmacology
  • Animals
  • Cattle
  • Cell-Penetrating Peptides / physiology*
  • Chlorpromazine / pharmacology
  • Cytochalasin D / pharmacology
  • Endocytosis / drug effects
  • Endocytosis / physiology*
  • HeLa Cells
  • Humans
  • Hydrazones / pharmacology
  • Nystatin / pharmacology
  • Peptide Fragments / metabolism
  • Ribonuclease, Pancreatic / metabolism*
  • tat Gene Products, Human Immunodeficiency Virus / metabolism

Substances

  • Cell-Penetrating Peptides
  • Hydrazones
  • N'-(3,4-dihydroxybenzylidene)-3-hydroxy-2-naphthahydrazide
  • Peptide Fragments
  • tat Gene Products, Human Immunodeficiency Virus
  • tat peptide (47-57), Human immunodeficiency virus 1
  • Nystatin
  • Cytochalasin D
  • Amiloride
  • Ribonuclease, Pancreatic
  • Chlorpromazine
  • ethylisopropylamiloride