Genistein induces enhanced growth promotion in ER-positive/erbB-2-overexpressing breast cancers by ER-erbB-2 cross talk and p27/kip1 downregulation

Carcinogenesis. 2010 Apr;31(4):695-702. doi: 10.1093/carcin/bgq007. Epub 2010 Jan 12.

Abstract

Genistein is a major isoflavone with known hormonal and tyrosine kinase-modulating activities. Genistein has been shown to promote the growth of estrogen receptor positive (ER+) MCF-7 cells. In ER-negative (ER-)/erbB-2-overexpressing (erbB-2+) cells, genistein has been shown to inhibit cell growth through its tyrosine kinase inhibitor activity. The effects of genistein on cell growth and tamoxifen response in ER+/erbB-2-altered breast cancers (known as luminal type B and noted in approximately 10 to 20% of breast cancers) have not been well explored. Using erbB-2-transfected ER+ MCF-7 cells, we found that genistein induced enhanced cellular proliferation and tamoxifen resistance when compared with control MCF-7 cells. These responses were accompanied by increased phosphorylation of ERalpha and ER signaling, without increase in ER protein levels. Genistein-treated MCF-7/erbB-2 cells also showed enhanced activation/phosphorylation of erbB-2, Akt and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase. Blockade of the phosphatidylinositol 3-kinase and/or MAPK pathways abrogated genistein-induced growth promotion, suggesting that genistein effects involve both critical signaling pathways. We also found that p27/kip1 was markedly downregulated in genistein-treated MCF-7/erbB-2 cells. Overexpression of p27/kip1 attenuated genistein-mediated growth promotion. In aggregate, our data suggest that the concomitant coexpression of ER and erbB-2 makes breast cancers particularly susceptible to the growth-promoting effects of genistein across a wide range of doses. The underlying mechanisms involve enhanced ER-erbB-2 cross talk and p27/kip1 downregulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / pathology*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cyclin-Dependent Kinase Inhibitor p27
  • Down-Regulation
  • Drug Resistance, Neoplasm
  • Female
  • Genistein / pharmacology*
  • Humans
  • Intracellular Signaling Peptides and Proteins / antagonists & inhibitors*
  • MAP Kinase Signaling System
  • Phosphatidylinositol 3-Kinases / physiology
  • Receptor, ErbB-2 / analysis
  • Receptor, ErbB-2 / physiology*
  • Receptors, Estrogen / analysis*
  • S Phase / drug effects
  • Tamoxifen / pharmacology

Substances

  • CDKN1B protein, human
  • Intracellular Signaling Peptides and Proteins
  • Receptors, Estrogen
  • Tamoxifen
  • Cyclin-Dependent Kinase Inhibitor p27
  • Genistein
  • Phosphatidylinositol 3-Kinases
  • ERBB2 protein, human
  • Receptor, ErbB-2