The promise of cancer therapeutics targeting the TNF-related apoptosis-inducing ligand and TRAIL receptor pathway

Oncogene. 2008 Oct 20;27(48):6207-15. doi: 10.1038/onc.2008.298.

Abstract

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily and has been shown to induce apoptosis in cancer cells but not normal cells. TRAIL triggers apoptosis through binding to its receptors DR4 and KILLER/DR5. Chemo or radiotherapy induces apoptosis through activation of p53 in response to cellular damage, whereas TRAIL induces apoptosis independent of p53. Mutations or deletions of p53 occurred in more than half of human tumors confer resistance to chemo-radiotherapy. Treatment of TRAIL-resistant tumors with agents targeting death receptors, intrinsic Bcl-2 family members, inhibitor of apoptosis proteins or PI3K/Akt pathway restores the sensitivity to TRAIL-induced apoptosis. Combination of rhTRAIL or the agonist antibody for TRAIL receptor with conventional chemotherapeutic agents results in enhanced efficacy in preventing tumor progression and metastasis. Therefore, the rational design of TRAIL-based therapy combining with other modality that either synergizes to apoptosis induction or overcomes the resistance represents a challenging strategy to achieve the systemic tumor targeting and augment the antitumor activity of cancer therapeutics.

Publication types

  • Review

MeSH terms

  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use*
  • Apoptosis / drug effects
  • Humans
  • Neoplasms / drug therapy*
  • Neoplasms / pathology
  • Receptors, TNF-Related Apoptosis-Inducing Ligand / drug effects*
  • TNF-Related Apoptosis-Inducing Ligand / drug effects*

Substances

  • Antineoplastic Agents
  • Receptors, TNF-Related Apoptosis-Inducing Ligand
  • TNF-Related Apoptosis-Inducing Ligand
  • TNFSF10 protein, human