Signaling mechanisms of melatonin in antiproliferation of hormone-refractory 22Rv1 human prostate cancer cells: implications for prostate cancer chemoprevention

J Pineal Res. 2007 Mar;42(2):191-202. doi: 10.1111/j.1600-079X.2006.00406.x.

Abstract

There is an unmet clinical demand for safe and effective pharmaceuticals/nutraceuticals for prostate cancer prevention and hormone-refractory prostate cancer treatment. Previous laboratory and human studies of our laboratory demonstrated an association between the antiproliferative action of melatonin and melatonin MT(1) receptor expression in prostate cancer. The aim of this study was to determine, using a pharmacological approach, the signaling mechanisms of melatonin in hormone-refractory 22Rv1 human prostate cancer cell antiproliferation. Both immunoreactive MT(1) and MT(2) subtypes of G protein-coupled melatonin receptor were expressed in 22Rv1 cells. Melatonin inhibited, concentration dependently, cell proliferation, upregulated p27(Kip1) gene transcription and protein expression, and downregulated activated androgen signaling in 22Rv1 cells. While the effects of melatonin were mimicked by 2-iodomelatonin, a high-affinity nonselective MT(1) and MT(2) receptor agonist, melatonin effects were blocked by luzindole, a nonselective MT(1) and MT(2) receptor antagonist, but were unaffected by 4-phenyl-2-propionamidotetraline, a selective MT(2) receptor antagonist. Importantly, we discovered that the antiproliferative effect of melatonin exerted via MT(1) receptor on p27(Kip1) gene and protein upregulation is mediated by a novel signaling mechanism involving co-activation of protein kinase C (PKC) and PKA in parallel. Moreover, we also showed that a melatonin/MT(1)/PKC mechanism is involved in melatonin-induced downregulation of activated androgen signal transduction in 22Rv1 cells. Taken together with the known molecular mechanisms of prostate cancer progression and transition to androgen independence, our data provide strong support for melatonin to be a promising small-molecule useful for prostate cancer primary prevention and secondary prevention of the development and progression of hormone refractoriness.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Cell Proliferation*
  • Growth Inhibitors / physiology*
  • Humans
  • Male
  • Melatonin / physiology*
  • Prostatic Neoplasms / metabolism*
  • Prostatic Neoplasms / pathology
  • Prostatic Neoplasms / prevention & control*
  • Signal Transduction / physiology*

Substances

  • Growth Inhibitors
  • Melatonin