Vol 27, No 1 (2022)
Review paper
Published online: 2021-12-10

open access

Page views 5686
Article views/downloads 689
Get Citation

Connect on Social Media

Connect on Social Media

Special stereotactic radiotherapy techniques: procedures and equipment for treatment simulation and dose delivery

Lisa Paoletti1, Corrado Ceccarelli2, Claudia Menichelli3, Cynthia Aristei4, Simona Borghesi5, Enrico Tucci5, Paolo Bastiani1, Salvatore Cozzi6
Rep Pract Oncol Radiother 2022;27(1):1-9.

Abstract

Stereotactic radiotherapy (SRT) is a multi-step procedure with each step requiring extreme accuracy. Physician-dependent accuracy includes appropriate disease staging, multi-disciplinary discussion with shared decision-making, choice of morphological and functional imaging methods to identify and delineate the tumor target and organs at risk, an image-guided patient set-up, active or passive management of intra-fraction movement, clinical and instrumental follow-up. Medical physicist-dependent accuracy includes use of advanced software for treatment planning and more advanced Quality Assurance procedures than required for conventional radiotherapy. Consequently, all the professionals require appropriate training in skills for high-quality SRT.

Thanks to the technological advances, SRT has moved from a “frame-based” technique, i.e. the use of stereotactic coordinates which are identified by means of rigid localization frames, to the modern “frame-less” SRT which localizes the target volume directly, or by means of anatomical surrogates or fiducial markers that have previously been placed within or near the target.

This review describes all the SRT steps in depth, from target simulation and delineation procedures to treatment delivery and image-guided radiation therapy. Target movement assessment and management are also described.

 

Article available in PDF format

View PDF Download PDF file

References

  1. Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010; 37(8): 4078–4101.
  2. ICRU Report 91. Prescribing, recording and reporting of stereotactic treatments with small photon beams. The International Commission on Radiation Units and Measurements. https://academic.oup.com/jicru/article-abstract/14/2/1/4035832?redirectedFrom=fulltext. (3 January 2021).
  3. Halvorsen PH, Cirino E, Das IJ, et al. AAPM-RSS Medical Physics Practice Guideline 9.a. for SRS-SBRT. J Appl Clin Med Phys. 2017; 18(5): 10–21.
  4. International Atomic Energy Agency. Dosimetry of Small Static Fields Used in External Beam Radiotherapy An International Code of Practice for Reference and Relative Dose Determination. Technical Reports SeriEs No. 483. IAEA, Vienna 2017.
  5. Solberg TD, Balter JM, Benedict SH, et al. Quality and safety considerations in stereotactic radiosurgery and stereotactic body radiation therapy: Executive summary. Pract Radiat Oncol. 2012; 2(1): 2–9.
  6. Lo S, Fakiris A, Chang E, et al. Stereotactic body radiation therapy: a novel treatment modality. Nature Reviews Clinical Oncology. 2009; 7(1): 44–54.
  7. Potters L, Kavanagh B, Galvin JM, et al. American Society for Therapeutic Radiology and Oncology, American College of Radiology. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) practice guideline for the performance of stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2010; 76(2): 326–332.
  8. American College of Radiology ACR-ASTRO practice parameter for the performance of stereotactic body radiation therapy 2014. http://www.acr.org/~/media/A159B3D508C64C918C4C6295BAEC4E2B.pdf (2 January 2021).
  9. Seung SK, Larson DA, Galvin JM, et al. American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) Practice Guideline for the Performance of Stereotactic Radiosurgery (SRS). Am J Clin Oncol. 2013; 36(3): 310–315.
  10. ACR Practice parameter for the performance of brain stereotactic radiosurgery. Revised 2016. www.acr.org. (3 January 2021).
  11. Wilke L, Andratschke N, Blanck O, et al. ICRU report 91 on prescribing, recording, and reporting of stereotactic treatments with small photon beams : Statement from the DEGRO/DGMP working group stereotactic radiotherapy and radiosurgery. Strahlenther Onkol. 2019; 195(3): 193–198.
  12. Foster R, Meyer J, Iyengar P, et al. Localization accuracy and immobilization effectiveness of a stereotactic body frame for a variety of treatment sites. Int J Radiat Oncol Biol Phys. 2013; 87(5): 911–916.
  13. Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006; 33(10): 3874–3900.
  14. Navarro-Martin A, Cacicedo J, Leaman O, et al. Comparative analysis of thermoplastic masks versus vacuum cushions in stereotactic body radiotherapy. Radiat Oncol. 2015; 10: 176.
  15. Chen G, Dong B, Shan G, et al. Choice of immobilization of stereotactic body radiotherapy in lung tumor patient by BMI. BMC Cancer. 2019; 19(1): 583.
  16. Sio TT, Jensen AR, Miller RC, et al. Influence of patient's physiologic factors and immobilization choice with stereotactic body radiotherapy for upper lung tumors. J Appl Clin Med Phys. 2014; 15(5): 4931.
  17. Li W, Purdie TG, Taremi M, et al. Effect of immobilization and performance status on intrafraction motion for stereotactic lung radiotherapy: analysis of 133 patients. Int J Radiat Oncol Biol Phys. 2011; 81(5): 1568–1575.
  18. Siva S, Devereux T, Kron T, et al. Vacuum immobilisation reduces tumour excursion and minimises intrafraction error in a cohort study of stereotactic ablative body radiotherapy for pulmonary metastases. J Med Imaging Radiat Oncol. 2014; 58(2): 244–252.
  19. Li W, Sahgal A, Foote M, et al. Impact of immobilization on intrafraction motion for spine stereotactic body radiotherapy using cone beam computed tomography. Int J Radiat Oncol Biol Phys. 2012; 84(2): 520–526.
  20. Lo SS, Foote M, Siva S, et al. Technical know-how in stereotactic ablative radiotherapy (SABR). J Med Radiat Sci. 2016; 63(1): 5–8.
  21. Guckenberger M, Krieger T, Richter A, et al. Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy. Radiother Oncol. 2009; 91(3): 288–295.
  22. Kim J, Wu Q, Zhao Bo, et al. To gate or not to gate - dosimetric evaluation comparing Gated vs. ITV-based methodologies in stereotactic ablative body radiotherapy (SABR) treatment of lung cancer. Radiat Oncol. 2016; 11(1): 125.
  23. Luh JY, Albuquerque KV, Cheng C, et al. ACR-ASTRO Practice Parameter for Image-guided Radiation Therapy (IGRT). Am J Clin Oncol. 2020; 43(7): 459–468.
  24. Hodapp N. [The ICRU Report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT)]. Strahlenther Onkol. 2012; 188(1): 97–99.
  25. Davidson MTM, Masucci GL, Follwell M, et al. Single arc volumetric modulated arc therapy for complex brain gliomas: is there an advantage as compared to intensity modulated radiotherapy or by adding a partial arc? Technol Cancer Res Treat. 2012; 11(3): 211–220.
  26. Myrehaug S, Chan G, Craig T, et al. A treatment planning and acute toxicity comparison of two pelvic nodal volume delineation techniques and delivery comparison of intensity-modulated radiotherapy versus volumetric modulated arc therapy for hypofractionated high-risk prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2012; 82(4): e657–e662.
  27. Guckenberger M, Richter A, Krieger T, et al. Is a single arc sufficient in volumetric-modulated arc therapy (VMAT) for complex-shaped target volumes? Radiother Oncol. 2009; 93(2): 259–265.
  28. Wu QJ, Yoo S, Kirkpatrick JP, et al. Volumetric arc intensity-modulated therapy for spine body radiotherapy: comparison with static intensity-modulated treatment. Int J Radiat Oncol Biol Phys. 2009; 75(5): 1596–1604.
  29. Bell LJ, Eade T, Kneebone A, et al. Initial experience with intra-fraction motion monitoring using Calypso guided volumetric modulated arc therapy for definitive prostate cancer treatment. J Med Radiat Sci. 2017; 64(1): 25–34.
  30. Kim J, Wen N, Jin JY, et al. Clinical commissioning and use of the Novalis Tx linear accelerator for SRS and SBRT. J Appl Clin Med Phys. 2012; 13(3): 3729.
  31. Thompson CM, Weston SJ, Cosgrove VC, et al. A dosimetric characterization of a novel linear accelerator collimator. Med Phys. 2014; 41(3): 031713.
  32. Jeraj R, Mackie T, Balog J, et al. Radiation characteristics of helical tomotherapy. Med Phys. 2004; 31(2): 396–404.
  33. Mahan SL, Ramsey CR, Scaperoth DD, et al. Evaluation of image-guided helical tomotherapy for the retreatment of spinal metastasis. Int J Radiat Oncol Biol Phys. 2005; 63(5): 1576–1583.
  34. Ferris WS, Kissick MW, Bayouth JE, et al. Evaluation of radixact motion synchrony for 3D respiratory motion: Modeling accuracy and dosimetric fidelity. J Appl Clin Med Phys. 2020; 21(9): 96–106.
  35. Orecchia R, Surgo A, Muto M, et al. VERO® radiotherapy for low burden cancer: 789 patients with 957 lesions. Ecancermedicalscience. 2016; 10: 677.
  36. Dieterich S, Cavedon C, Chuang CF, et al. Report of AAPM TG 135: quality assurance for robotic radiosurgery. Med Phys. 2011; 38(6): 2914–2936.
  37. Klüter S. Technical design and concept of a 0.35 T MR-Linac. Clin Transl Radiat Oncol. 2019; 18: 98–101.
  38. Winkel D, Bol GH, Kroon PS, et al. Adaptive radiotherapy: The Elekta Unity MR-linac concept. Clin Transl Radiat Oncol. 2019; 18: 54–59.
  39. Leksell L, Steiner L, Leksell L, et al. Stereotactic radiosurgery in intracranial arterio-venous malformations. Acta Neurochir (Wien). 1974; Suppl 21(9): 195–209.
  40. Schlesinger DJ, Sanders JC, Muller DA, et al. 8+ Year Performance of the Gamma Knife Perfexion/Icon Patient Positioning System and Possibilities for Preemptive Fault Detection Using Statistical Process Control. Med Phys. 2021; 48(7): 3425–3437.
  41. Shah AP, Meeks DT, Willoughby TR, et al. Intrafraction motion during frameless radiosurgery using Varian HyperArc and BrainLab Elements immobilization systems. J Radiosurg SBRT. 2020; 7(2): 149–156.
  42. Nakamura M, Sawada A, Ishihara Y, et al. Dosimetric characterization of a multileaf collimator for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000. Med Phys. 2010; 37(9): 4684–4691.
  43. ACR-ASTRO Practice parameter for radiation oncology. Revised 2018. www.acr.org (3 January 2021).
  44. Saw C, Bao S, Li S. A review on the technical and dosimetric aspects of stereotactic body radiation therapy (SBRT). J Radiat Oncol. 2012; 1(4): 317–322.
  45. Dickey M, Roa W, Drodge S, et al. A planning comparison of 3-dimensional conformal multiple static field, conformal arc, and volumetric modulated arc therapy for the delivery of stereotactic body radiotherapy for early stage lung cancer. Med Dosim. 2015; 40(4): 347–351.
  46. Paik EK, Kim MS, Choi CW, et al. Dosimetric comparison of volumetric modulated arc therapy with robotic stereotactic radiation therapy in hepatocellular carcinoma. Radiat Oncol J. 2015; 33(3): 233–241.
  47. Song JHo, Kang KiM, Choi HS, et al. Comparing the clinical outcomes in stereotactic body radiotherapy for lung tumors between Ray-Tracing and Monte-Carlo algorithms. Oncotarget. 2016; 7(14): 19045–19053.
  48. Grimm J. Dose Tolerance for Stereotactic Body Radiation Therapy. Semin Radiat Oncol. 2016; 26(2): 87–88.
  49. Lin YW, Lin KH, Ho HW, et al. Treatment plan comparison between stereotactic body radiation therapy techniques for prostate cancer: non-isocentric CyberKnife versus isocentric RapidArc. Phys Med. 2014; 30(6): 654–661.
  50. Roa DE, Schiffner DC, Zhang J, et al. The use of RapidArc volumetric-modulated arc therapy to deliver stereotactic radiosurgery and stereotactic body radiotherapy to intracranial and extracranial targets. Med Dosim. 2012; 37(3): 257–264.
  51. Gallo JJ, Kaufman I, Powell R, et al. Single-fraction spine SBRT end-to-end testing on TomoTherapy, Vero, TrueBeam, and CyberKnife treatment platforms using a novel anthropomorphic phantom. J Appl Clin Med Phys. 2015; 16(1): 5120.
  52. de Pooter JA, Wunderink W, Méndez Romero A, et al. PTV dose prescription strategies for SBRT of metastatic liver tumours. Radiother Oncol. 2007; 85(2): 260–266.
  53. Eriguchi T, Takeda A, Oku Y, et al. Multi-institutional comparison of treatment planning using stereotactic ablative body radiotherapy for hepatocellular carcinoma - benchmark for a prospective multi-institutional study. Radiat Oncol. 2013; 8: 113.
  54. Esposito M, Maggi G, Marino C, et al. Multicentre treatment planning inter-comparison in a national context: The liver stereotactic ablative radiotherapy case. Phys Med. 2016; 32(1): 277–283.
  55. Amichetti M, Amelio D, Minniti G, et al. Chondromyxoid fibroma of the skull base: differential diagnosis and radiotherapy: two case reports and a review of the literature. Acta Oncol. 2005; 44(6): 545–553.
  56. Atkins KM, Pashtan IM, Bussière MR, et al. Proton Stereotactic Radiosurgery for Brain Metastases: A Single-Institution Analysis of 370 Patients. Int J Radiat Oncol Biol Phys. 2018; 101(4): 820–829.
  57. Oderinde OM, Shirvani SM, Olcott PD, et al. The technical design and concept of a PET/CT linac for biology-guided radiotherapy. Clin Transl Radiat Oncol. 2021; 29: 106–112.
  58. Taunk NK, Burgdorf B, Dong L, et al. Simultaneous Multiple Liver Metastasis Treated with Pencil Beam Proton Stereotactic Body Radiotherapy (SBRT). Int J Part Ther. 2021; 8(2): 89–94.
  59. Boczkowski A, Kelly P, Meeks SL, et al. Proton vs Hyperarc™ radiosurgery: A planning comparison. J Appl Clin Med Phys. 2020; 21(12): 96–108.
  60. Chao ST, Dad LK, Dawson LA, et al. ACR-ASTRO Practice Parameter for the Performance of Stereotactic Body Radiation Therapy. Am J Clin Oncol. 2020; 43(8): 545–552.



Reports of Practical Oncology and Radiotherapy