Skip to main content
Log in

Molecular Targeted Therapy in Ovarian Cancer

What is on the Horizon?

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Over the past two decades, empirical optimization of cytotoxic chemotherapy combinations and surgical debulking procedures have improved outcomes and survival in epithelial ovarian cancer. Yet, this disease remains the fifth leading cause of cancer-related deaths in the US, as cure rates seem to have reached a plateau at approximately 20% with conventional chemotherapy. Novel high-throughput genomic and proteomic analyses have improved the molecular understanding of ovarian carcinogenesis, thereby providing a vast array of new potential drug targets with complex signalling interactions. In order to yield the most significant impact on disease outcome, it is necessary to carefully select, and subsequently target, the driving molecular pathway(s) within a tumour or tumour subtype, which are most likely to correspond to high-frequency mutations and genomic aberrations. The identification of biomarkers predictive of response to targeted therapy is essential to avoid poor responses to potentially useful drugs in unselected trial populations. With some promising, albeit early, phase III data on the angiogenesis inhibitor bevacizumab, exciting new opportunities lie ahead with the ultimate goal of personalizing therapies to individual tumour profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Fig. 1

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010. CA Cancer J Clin 2008; 60: 277–300

    Article  Google Scholar 

  2. Australian Institute of Health and Welfare. Gynaecological cancer projections 2010–2015. Cancer series no. 53. Cat. no. CAN 49. Canberra: AIHW, 2010

    Google Scholar 

  3. Greenlee RT, Hill-Harmon MB, Murray T, et al. Cancer statistics, 2001. CA Cancer J Clin 2001; 51: 15–36

    Article  PubMed  CAS  Google Scholar 

  4. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin 2006; 56: 106–30

    Article  PubMed  Google Scholar 

  5. Jemal A, Murray T, Ward E, et al. Cancer statistics, 2005. CA Cancer J Clin 2005; 55: 10–30

    Article  PubMed  Google Scholar 

  6. Markman M, Bundy BN, Alberts DS, et al. Phase III trial of standard-dose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small volume stage III ovarian carcinoma: an intergroup study of the Gynecologic Oncology Group, Southwestern Oncology Group, and Eastern Cooperative Oncology Group. J Clin Oncol 2001; 19: 1001–7

    PubMed  CAS  Google Scholar 

  7. Hess LM, Ham-Hutchins M, Herzog TJ, et al. A meta-analysis of the efficacy of intraperitoneal cisplatin for the front-line treatment of ovarian cancer. Int J Gynecol Cancer 2007; 17: 561–70

    Article  PubMed  CAS  Google Scholar 

  8. Bookman MA, for the Gynecologic Cancer InterGroup (GCIG). GOG0182-ICON5: 5-arm phase III randomized trial of paclitaxel (P) and carboplatin (C) vs combinations with gemcitabine (G), PEG-lipososomal doxorubicin (D), or topotecan (T) in patients (pts) with advanced-stage epithelial ovarian (EOC) or primary peritoneal (PPC) carcinoma. J Clin Oncol 2009; 27: 1419–25

    Article  PubMed  CAS  Google Scholar 

  9. Bookman MA, Darcy KM, Clarke-Pearson D, et al. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with over-expression of HER2: a phase II trial of the Gynaecological Oncology Group. J Clin Oncol 2003; 21: 283–90

    Article  PubMed  CAS  Google Scholar 

  10. Gordon MS, Matei D, Aghajanian C, et al. Clinical activity of pertuzumab, a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status. J Clin Oncol 2006; 24: 4324–32

    Article  PubMed  CAS  Google Scholar 

  11. Rivkin SE, Muller C, Iriarte D, et al. Phase I/II lapatinib plus carboplatin and paclitaxel in stage III or IV relapsed ovarian cancer patients. J Clin Oncol (Meet Abstr) 2008; 26: 5556

    Google Scholar 

  12. Schilder RJ, Lokshin AE, Armstrong DK, et al. Phase II trial of single-agent cetuximab in patients with persistent or recurrent epithelial ovarian or primary peritoneal carcinoma with the potential for dose-escalation to rash. Gynecol Oncol 2009; 113: 21–7

    Article  PubMed  CAS  Google Scholar 

  13. Seiden MV, Burris HA, Matulonis U, et al. A phase II trial of EMD72000 (matuzumab), a humanized anti-EGFR monoclonal antibody, in patients with platinum-resistant ovarian and primary peritoneal malignancies. Gynecol Oncol 2007; 104: 727–31

    Article  PubMed  CAS  Google Scholar 

  14. Schilder RJ, Sill MW, Chen X, et al. Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group Study. Clin Cancer Res 2005; 11: 5539–48

    Article  PubMed  CAS  Google Scholar 

  15. Gordon NA, Finkler N, Edwards RP, et al. Efficacy and safety of erlotinib, an epidermal growth factor tyrosine kinase inhibitor in patients with advanced ovarian carcinoma: results from phase II multicentre study. Int J Gynecol Cancer 2005; 15: 785–92

    Article  PubMed  CAS  Google Scholar 

  16. Coleman RL, Broaddus RR, Bodurka DC, et al. Phase II trial of imatinib mesylate in patients with recurrent platinum-and taxane-resistant epithelial ovarian cancer and primary peritoneal cancers. Gynecol Oncol 2006; 101: 126–31

    Article  PubMed  CAS  Google Scholar 

  17. Wang GL, Wen ZQ, Xu WP, et al. Inhibition of lysophosphatidic acid receptor-expression by RNA interference decreases lysophosphatidic acid-induced urokinase plasminogen activator activation, cell invasion, and migration in ovarian cancer SKOV-3 Cells. Croat Med J 2008 Apr; 49(2): 175–81

    Article  PubMed  CAS  Google Scholar 

  18. Dy GK, Bruzek LM, Croghan GA, et al. A phase I trial of the novel farnesyl protein transferase inhibitor, BMS 214662, in combination with paclitaxel and carboplatin in patients with advanced cancer. Clin Cancer Res 2005; 11(5): 1877–83

    Article  PubMed  CAS  Google Scholar 

  19. Oza AM, Elit L, Swenerton K, et al. Phase II study of CGP 69846A (ISIS 5132) in recurrent epithelial ovarian cancer: an NCIC clinical trials group study (NCIC IND. 116). Gynecol Oncol 2003; 89: 129–33

    Article  PubMed  CAS  Google Scholar 

  20. Steinmetz R, Wagoner HA, Zeng P, et al. Mechanisms regulating the constitutive activation of the extracellular signal-regulated kinase (ERK) signaling pathway in ovarian cancer and the effect of ribonucleic acid interference for ERK1/2 on cancer cell proliferation. Mol Endocrinol 2004; 18: 2570–82

    Article  PubMed  CAS  Google Scholar 

  21. Duan Z, Bradner J, Greenberg E, et al. 8-benzyl-4-oxo-8-azabicyclo[3.2.1]oct-2-ene-6,7-dicarboxylic acid (SD-1008), a novel janus kinase 2 inhibitor, increases chemotherapy sensitivity in human ovarian cancer cells. Mol Pharmacol 2007; 72: 1137–45

    Article  PubMed  CAS  Google Scholar 

  22. Burke WM, Jin X, Lin HJ, et al. Inhibition of constitutively active Stat3 suppresses growth of human ovarian and breast cancer cells. Oncogene 2001; 20: 7925–34

    Article  PubMed  CAS  Google Scholar 

  23. Poole C, Lisyanskaya A, Rodenhuis S, et al. A randomized phase II clinical trial of the SRC inhibitor saracatinib (AZD0530) and carboplatin/paclitaxel (C+P) versus C+P in patients with advanced platinum sensitive epithelial ovarian cancer. Ann Oncol (Meet Abstr) 2010; 21 Suppl. 8: 972O

    Google Scholar 

  24. Burger RA, Brady MF, Bookman MA, et al. Phase III trial of bevacizumab (BEV) in the primary treatment of advanced epithelial ovarian cancer (EOC), primary peritoneal cancer (PPC), or fallopian tube cancer (FTC): a Gynecologic Oncology Group study. J Clin Oncol (Meet Abstr) 2010; 28: LBA1

    Google Scholar 

  25. Perren T, Swart AM, Pfisterer J, et al. ICON7: A phase III randomized gynaecologic cancer Intergroup trial of concurrent bevacizumab and chemotherapy followed by maintenance bevacizumab, versus chemotherapy alone in women with newly diagnosed epithelial ovarian (EOC), primary peritoneal (PPC) or fallopian tube cancer (FTC). Ann Oncol (Meet Abstr) 2010; 21 Suppl. 8: LBA4

    Google Scholar 

  26. Tew WP, Colombo N, Ray-Coquard I, et al. VEGF-trap for patients with recurrent platinum-resistant epithelial ovarian cancer: preliminary results of a randomized, multicenter phase II study. J Clin Oncol (Meet Abstr) 2007; 25: 5508

    Google Scholar 

  27. Matulonis U, Berlin S, Ivy P, et al. Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. J Clin Oncol 2009; 27: 5601–6

    Article  PubMed  CAS  Google Scholar 

  28. Friedlander M, Hancock KC, Rischin D, et al. A phase II, open label study evaluating pazopanib in recurrent ovarian cancer. Gynecol Oncol 2010; 119: 32–7

    Article  PubMed  CAS  Google Scholar 

  29. Biagi JJ, Oza AM, Chalchal HI, et al. A phase II study of sunitinib in patients with recurrent epithelial ovarian and primary peritoneal carcinoma: an NCIC Clinical Trials Group Study. Ann Oncol. Epub 2010 Aug 12

  30. Welch SA, Hirte HW, Elit L, et al. Sorafenib in combination with gemcitabine in recurrent epithelial ovarian cancer: a study of the Princess Margaret Hospital phase II consortium. Int J Gynecol Cancer 2010 Jul; 20(5): 787–93

    Article  PubMed  Google Scholar 

  31. Annunziata CM, Walker AJ, Minasian L, et al. Vandetanib, designed to inhibit VEGFR2 and EGFR signaling, had no clinical activity as monotherapy for recurrent ovarian cancer and no detectable modulation of VEGFR 2. Clin Cancer Res 2010; 15: 664–72

    Article  CAS  Google Scholar 

  32. Ledermann JA, Rustin GJ, Hackshaw A, et al. A randomized phase II placebo-controlled trial using maintenance therapy to evaluate the vascular targeting agent BIBF 1120 following treatment of relapsed ovarian cancer (OC). J Clin Oncol (Meet Abstr) 2009; 27: 5501

    Google Scholar 

  33. Vergote IB, Oza AM, Hausen VL, et al. A randomized, double-blind, placebo-controlled phase 2 study of AMG 386 plus weekly paclitaxel in patients with advanced ovarian cancer. Ann Oncol (Meet Abstr) 2010; 21 Suppl. 8: 975O

    Google Scholar 

  34. Berek J, Taylor P, McGuire W, et al. Oregovomab maintenance monoimmunotherapy does not improve outcomes in advanced ovarian cancer. J Clin Oncol 2009 Jan 20; 27(3): 418–25

    Article  PubMed  CAS  Google Scholar 

  35. Verheijen RH, Massuger LF, Benigno BB, et al. Phase III trial of intraperitoneal therapy with yttrium-90-labeled HMFG1 murine monoclonal antibody in patients with epithelial ovarian cancer after a surgically defined complete remission. J Clin Oncol 2006 Feb 1; 24(4): 571–8

    Article  PubMed  CAS  Google Scholar 

  36. Angstrom Pharmaceuticals, Inc. Angstrom Pharmaceuticals Drug Development Programs [online]. Available from URL: http://www.angstrominc.com/drug_development.html [Accessed 2011 Mar 7]

  37. Bell-McGuinn KM, Matthews CM, Ho SN, et al. A phase II, single-arm study of the anti-α5b1 integrin antibody volociximab as monotherapy in patients with platinum-resistant advanced epithelial ovarian or primary peritoneal cancer. Gynecol Oncol 2011 May 1; 121(2): 273–9

    Article  PubMed  CAS  Google Scholar 

  38. The pharmaletter. British Biotech loses again with marimastat [online]. Available from URL: http://www.thepharmaletter.com/file/14852/british-biotech-loses-again-with-marimastat.html [Accessed 2011 Mar 7]

  39. Parsons SL, Watson SA, Steele RJC. Phase I/II trial of batimastat, a matrix metalloproteinase inhibitor, in patients with malignant ascites. Eur J Surg Oncol 1997; 23: 526–31

    Article  PubMed  CAS  Google Scholar 

  40. Smyth JF, Gourley C, Walker G, et al. Antiestrogen therapy is active in selected ovarian cancer cases: the use of letrozole in estrogen receptor-positive patients. Clin Cancer Res 2007 Jun 15; 13(12): 3617–22

    Article  PubMed  CAS  Google Scholar 

  41. Hatch KD, Beecham JB, Blessing JA, et al. Responsiveness of patients with advanced ovarian carcinoma to tamoxifen: a Gynecologic Oncology Group study of second-line therapy in 105 patients. Cancer 1991; 68: 269–71

    Article  PubMed  CAS  Google Scholar 

  42. Audeh MW, Penson RT, Friedlander M. Phase II trial of the oral PARP inhibitor olaparib (AZD2281) in BRCA-deficient advanced ovarian cancer. J Clin Oncol (Meet Abstr) 2009; 27(15S): 5500

    Google Scholar 

  43. Kaye S, Kaufman B, Lubinski J. Phase II study of the oral PARP inhibitor olaparib (AZD2281) versus liposomal doxorubicin in ovarian cancer patients with BRCA1 and/or BRCA2 mutations. Ann Oncol (Meet Abstr) 2010; 21 Suppl. 8: 971O

    Google Scholar 

  44. Zeimet AG, Marth C. Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol 2003; 4: 415–22

    Article  PubMed  CAS  Google Scholar 

  45. Nakahara T, Kita A, Yamanaka K, et al. Broad spectrum and potent antitumor activities of YM155, a novel small-molecule surviving suppressant, in a wide variety of human cancer cell lines and xenograft models. Cancer Sci 2011; 102: 614–21

    Article  PubMed  CAS  Google Scholar 

  46. Witham J, Valenti MR, De-Haven-Brandon AK, et al. The Bcl-2/Bcl-XL family inhibitor ABT-737 sensitizes ovarian cancer cells to carboplatin. Clin Cancer Res 2007; 13: 7191–8

    Article  PubMed  CAS  Google Scholar 

  47. Abedini MR, Qiu Q, Yan X, et al. Possible role of FLICE-like inhibitory protein (FLIP) in chemoresistant ovarian cancer cells in vitro. Oncogene 2004; 23: 6997–7004

    Article  PubMed  CAS  Google Scholar 

  48. Matulonis U, Sharma SK, Ghamande S, et al. Single-agent activity and safety of the investigational aurora A kinase inhibitor MLN8237 in patients with platinum-treated epithelial ovarian, fallopian tube or primary peritoneal carcinoma. Ann Oncol (Meet Abstr) 2010; 21 Suppl. 8: 974PD

    Google Scholar 

  49. Shahin MS, Braly P, Rose P, et al. A phase II, open-label study of ispinesib (SB-715992) in patients with platinum/taxane refractory or resistant relapsed ovarian cancer. J Clin Oncol (Meet Abstr) 2007; 25(18S): 5562

    Google Scholar 

  50. Bast RC, Iyer RB, Hu W, et al. A phase IIa study of a sequential regimen using azacitidine to reverse platinum resistance to carboplatin in patients with platinum resistant or refractory epithelial ovarian cancer. J Clin Oncol (Meet Abstr) 2008; 26: 3500

    Google Scholar 

  51. Landen CN, Merritt WM, Mangala LS, et al. Intraperitoneal delivery of liposomal siRNA for therapy of advanced ovarian cancer. Cancer Biol Ther 2006; 5: 1708–13

    Article  PubMed  CAS  Google Scholar 

  52. Naumann RJ, Symanowski JT, Ghamande SA, et al. A randomized phase II trial comparing EC145 and pegylated liposomal doxorubicin (PLD) in combination, versus PLD alone, in subjects with platinum-resistant ovarian cancer. J Clin Oncol (Meet Abstr) 2010; 28: LBA5012b

    Google Scholar 

  53. White AJ, Coleman RL, Armstrong DK, et al. Efficacy and safety of farletuzumab, a humanized monoclonal antibody to folate receptor alpha, in platinum-sensitive relapsed ovarian cancer subjects: final data from a multicenter phase II study. J Clin Oncol (Meet Abstr) 2010; 28: 5001

    Google Scholar 

  54. Fehrenbacher L, Kaye S, Holloway R, et al. A phase 2, randomized, placebo-controlled study of hedgehog (Hh) pathway inhibitor GDC-0449 as maintenance therapy in patients with ovarian cancer in 2nd or 3rd complete remission (CR). Ann Oncol (Meet Abstr) 2010; 21 Suppl. 8: LBA25

    Google Scholar 

  55. Fields AP, Regala RP. Protein kinase Ci: human oncogene, prognostic marker and therapeutic target. Pharmacol Res 2007; 55: 487–97

    Article  PubMed  CAS  Google Scholar 

  56. Bast Jr RC, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 2009; 9(6): 415–28

    Article  PubMed  CAS  Google Scholar 

  57. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70

    Article  PubMed  CAS  Google Scholar 

  58. Watanabe T, Imoto I, Kosugi Y, et al. A novel amplification at 17q21-23 in ovarian cancer cell lines detected by comparative genomic hybridization. Gynecol Oncol 2001; 81: 172–7

    Article  PubMed  CAS  Google Scholar 

  59. Hennessy BT, Mills GB. Ovarian cancer: homeobox genes, autocrine/paracrine growth, and kinase signaling. Int J Biochem Cell Biol 2006; 38: 1450–6

    Article  PubMed  CAS  Google Scholar 

  60. Shih IM, Kurman RJ. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol 2004; 164: 1511–8

    Article  PubMed  CAS  Google Scholar 

  61. Ahmed AA, Etemadmoghadam D, Temple J, et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol 2010; 221: 49–56

    Article  PubMed  CAS  Google Scholar 

  62. Risch HA, McLaughlin JR, Cole DE, et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst 2006; 98: 1694–706

    Article  PubMed  CAS  Google Scholar 

  63. Bowtell DD. The genesis and evolution of high-grade serous ovarian cancer. Nat Rev Cancer. Epub 2010 Oct 14

  64. Schwartz DR, Kardia SLR, Shedden KA, et al. Gene expression in ovarian cancer reflects both morphology and biological behavior, distinguishing clear cell from other poor-prognosis ovarian carcinomas. Cancer Res 2002; 62: 4722–9

    PubMed  CAS  Google Scholar 

  65. Madore J, Ren F, Filali-Mouhim A, et al. Characterization of the molecular differences between ovarian endometrioid and ovarian serous carcinoma. J Pathol 2010; 220: 392–400

    PubMed  Google Scholar 

  66. Campbell IG, Russell SE, Choong DYH, et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 2004; 64: 7679–81

    Article  Google Scholar 

  67. Kuo KT, Mao TS, Jones S, et al. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol 2009 May; 174(5): 1597–601

    Article  PubMed  CAS  Google Scholar 

  68. Bonome T, Lee JY, Park DC, et al. Expression profiling of serous low malignant potential, low-grade, and high-grade tumors of the ovary. Cancer Res 2005; 65: 10602–12

    Article  PubMed  CAS  Google Scholar 

  69. Sheehan KM, Calvert VS, Kay EW, et al. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics 2005; 4: 346–55

    Article  PubMed  CAS  Google Scholar 

  70. Bast Jr RC, Mills GB. Personalizing therapy for ovarian cancer: BRCAness and beyond. J Clin Oncol 2010; 28: 3545–8

    Article  PubMed  CAS  Google Scholar 

  71. Tothill RW, Tinker AV, George J, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res 2008; 14: 5198–208

    Article  PubMed  CAS  Google Scholar 

  72. Bartlett JM, Langdon SP, Simpson BJ, et al. The prognostic value of epidermal growth factor receptor m-RNA expression in primary ovarian cancer. Br J Cancer 1996; 73: 301–6

    Article  PubMed  CAS  Google Scholar 

  73. Baserga R. The insulin-like growth factor-I receptor as a target for cancer therapy. Expert Opin Ther Targets 2005; 9: 753–68

    Article  PubMed  CAS  Google Scholar 

  74. Goltsov A, Faratian D, Langdon SP, et al. Compensatory effects in the PI3K/PTEN/AKT signaling network following receptor tyrosine kinase inhibition. Cell Signal 2011; 23: 407–16

    Article  PubMed  CAS  Google Scholar 

  75. Konner J, Schilder RJ, DeRosa FA, et al. A phase II study of cetuximab/paclitaxel/carboplatin for the initial treatment of advanced-stage ovarian, primary peritoneal or fallopian tube cancer. Gynecol Oncol 2008; 110: 140–5

    Article  PubMed  CAS  Google Scholar 

  76. Vasey PL, Paul J, Rustin R, et al. A phase Ib trial of docetaxel, carboplatin and erlotinib in ovarian, fallopian tube and primary peritoneal cancers. Br J Cancer 2008; 98: 1774–80

    Article  PubMed  CAS  Google Scholar 

  77. Vasey PA, Paul J, Rustin R, et al. Maintenance erlotinib following first-line treatment with docetaxel, carboplatin and erlotinib in patients with ovarian cancer. J Clin Oncol (Meet Abstr) 2007; 25 (18 Suppl.): 5560

    Google Scholar 

  78. Tanyi JL, Morris AJ, Wolf JK, et al. The human lipid phosphate phosphatase-3 decreases the growth, survival, and tumorigenesis of ovarian cancer cells: validation of the lysophosphatidic acid signaling cascade as a target for therapy in ovarian cancer. Cancer Res 2003; 63: 1073–82

    PubMed  CAS  Google Scholar 

  79. Umezu-Goto M, Tanyi J, Lahad J, et al. Lysophosphatidic acid production and action: validated targets in cancer? J Cell Biochem 2004; 92: 1115–40

    Article  PubMed  CAS  Google Scholar 

  80. Pustilnik TB, Estrella V, Wiener JR, et al. Lysophosphatidic acid induces urokinase secretion by ovarian cancer cells. Clin Cancer Res 1999; 5: 3704–10

    PubMed  CAS  Google Scholar 

  81. Herman WH, Simonson MS. Nuclear signaling by endothelin-1: a Ras pathway for activation of the c-fos serum response element. J Biol Chem 1995; 270: 11654–61

    Article  PubMed  CAS  Google Scholar 

  82. Bagnato A, Salani D, Di Castro V, et al. Expression of endothelin 1 and endothelin A receptor in ovarian carcinoma: evidence for an autocrine role in tumor growth. Cancer Res 1999; 59: 720–7

    PubMed  CAS  Google Scholar 

  83. Del BD, Di CV, Biroccio A, et al. Endothelin-1 protects ovarian carcinoma cells against paclitaxel-induced apoptosis: requirement for Akt activation. Mol Pharmacol 2002; 61: 524–32

    Article  Google Scholar 

  84. Rosano L, Cianfrocca R, Spinella F, et al. Combination therapy of zibotentan with cisplatinum and paclitaxel is an effective regimen for epithelial ovarian cancer. Can J Physiol Pharmacol 2010; 88: 676–81

    Article  PubMed  CAS  Google Scholar 

  85. Liu J, Yang G, Thompson-Lanza JA, et al. A genetically defined model for human ovarian cancer. Cancer Res 2004; 64: 1655–63

    Article  PubMed  CAS  Google Scholar 

  86. Shayesteh L, Lu Y, Kuo WL, et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 1999; 21: 99–102

    Article  PubMed  CAS  Google Scholar 

  87. Sansaland I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 2004; 22: 2954–63

    Article  CAS  Google Scholar 

  88. Hu L, Zaloudek C, Mills GB, et al. In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002). Clin Cancer Res 2000; 6: 880–6

    PubMed  CAS  Google Scholar 

  89. Engel JB, Schonhals T, Hausler S, et al. Induction of programmed cell death bu inhibition of AKT with the alkyl-phosphocholine perifosine in in vitro models of platinum sensitive nad resistant ovarian cancers. Arch Gynecol Obstet. Epub 2010 Apr 20

  90. Lin YG, Kunnumakkara AB, Nair A, et al. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin Cancer Res 2007; 13: 3423–30

    Article  PubMed  CAS  Google Scholar 

  91. Samanta AK, Huang HJ, Bast Jr RC, et al. Overexpression of MEKK3 confers resistance to apoptosis through activation of NFkappaB. J Biol Chem 2004; 279: 7576–83

    Article  PubMed  CAS  Google Scholar 

  92. Madhusudan S, Tamir A, Bates N, et al. A multicenter phase I gene therapy clinical trial involving intraperitoneal administration of E1 A-lipid complex in patients with recurrent epithelial overian cancer overexpressing HER-2/neu oncogene. Clin Cancer Res 2004; 10: 2905–7

    Article  Google Scholar 

  93. Rosen DG, Mercado-Uribe I, Yang G, et al. The role of constitutively active signal transducer and activator of transcription 3 in ovarian tumorigenesis and prognosis. Cancer 2006; 107: 2730–40

    Article  PubMed  CAS  Google Scholar 

  94. Klampfer L. Signal transducers and activators of transcription (STATs): novel targets for chemopreventative and chemotherapeutic drugs. Curr Cancer Drug Targets 2006; 6: 107–21

    Article  PubMed  CAS  Google Scholar 

  95. Silver DL, Naora H, Liu J, et al. Activated signal transducer and activator of transcription (STAT) 3: localization in focal adhesions and function in ovarian cancer cell motility. Cancer Res 2004; 64: 3550–8

    Article  PubMed  CAS  Google Scholar 

  96. Han LY, Landen CN, Trevino JG, et al. Antiangiogenic and antitumor effects of SRC inhibition in ovarian carcinoma. Cancer Res 2006; 66: 8633–9

    Article  PubMed  CAS  Google Scholar 

  97. Park JT, Li M, Nakayama K, et al. Notch3 gene amplification in ovarian cancer. Cancer Res 2006 Jun 15; 66: 6312–8

    Article  PubMed  CAS  Google Scholar 

  98. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–6

    Article  PubMed  CAS  Google Scholar 

  99. Shen GH, Ghazizadeh M, Kawanami O, et al. Prognostic significance of vascular endothelial growth factor expression in human ovarian carcinoma. Br J Cancer 2000; 83: 196–203

    Article  PubMed  CAS  Google Scholar 

  100. Hu L, Hoffmann J, Zaloudak C, et al. Vascular endothelial growth factor immunoneutralization plus paclitaxel markedly reduces tumor burden and ascites in athymic mouse models of ovarian cancer. Am J Pathol 2002; 161: 1917–24

    Article  PubMed  CAS  Google Scholar 

  101. Burger RA, Sill MW, Monk BJ, et al. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. J Clin Oncol 2007; 25: 5165–71

    Article  PubMed  CAS  Google Scholar 

  102. Cannistra SA, Matulonis SA, Penson RT, et al. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J Clin Oncol 2007; 25: 5180–6

    Article  PubMed  CAS  Google Scholar 

  103. Micha JP, Goldstein BH, Rettenmaier MA, et al. A phase II study of outpatients first-line paclitaxel, carboplatin and bevacizumab for advanced-stage epithelial ovarian, peritoneal and fallopian tube cancer. Int J Gynecol Cancer 2007; 17: 771–6

    Article  PubMed  CAS  Google Scholar 

  104. Nathan PD, Judson I, Padhani A, et al. A phase I study of combretastatin A4 phosphate (CA4P) and bevacizumab in subjects with advanced solid tumors. J Clin Oncol (Meet Abstr) 2008; 26(15S): 3550

    Google Scholar 

  105. Hirte HW, Vidal GF, Fleming F, et al. A phase II study of cediranib [AZD2171] in recurrent or persistent ovarian, peritoneal or fallopian tube cancer: final results of a PMH, Chicago and California consortia trial. J Clin Oncol (Meet Abstr) 2008; 26: 5521

    Google Scholar 

  106. Lessan K, Aguiar DJ, Oegema T, et al. CD44 and b1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. Am J Pathol 1999; 154: 1525–37

    Article  PubMed  CAS  Google Scholar 

  107. Bast Jr RC, Klug TL, St. John E, et al. A radioimmuno-assay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N Engl J Med 1983; 309: 883–7

    Article  PubMed  Google Scholar 

  108. Rump A, Morikawa Y, Tanaka M. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem 2004; 279: 9190–8

    Article  PubMed  CAS  Google Scholar 

  109. Strobel T, Swanson L, Cannistra SA. In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice: a novel role for CD44 in the process of peritoneal implantation. Cancer Res 1997; 57: 1228–32

    PubMed  CAS  Google Scholar 

  110. Kamat AA, Fletcher M, Gruman LM, et al. The clinical relevance of stromal matrix metalloproteinase expression in ovarian cancer. Clin Cancer Res 2006; 12: 1707–14

    Article  PubMed  CAS  Google Scholar 

  111. Davies B, Brown PD, East N, et al. A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts. Cancer Res 1993; 53: 2087–91

    PubMed  CAS  Google Scholar 

  112. Rasmussen HS, McCann PP. Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. Pharmacol Ther 1997; 75: 69–75

    Article  PubMed  CAS  Google Scholar 

  113. Lindgren PR, Cajander S, Bäckström T, et al. Estrogen and progesterone receptors in ovarian epithelial tumors. Mol Cell Endocrinol 2004; 221: 97–104

    Article  PubMed  CAS  Google Scholar 

  114. Lau KM, Mok SC, Ho SM. Expression of human estrogen receptor-alpha and -beta, progesterone receptor, and androgen receptor mRNA in normal and malignant ovarian epithelial cells. Proc Natl Acad Sci U S A 1999; 96: 5722–7

    Article  PubMed  CAS  Google Scholar 

  115. Cheng W, Liu J, Yoshida H, et al. Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nat Med 2005; 11: 531–7

    Article  PubMed  CAS  Google Scholar 

  116. Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434(7035): 917–21

    Article  PubMed  CAS  Google Scholar 

  117. Fong PC, Boss DS, Carden CP, et al. AZD2281 (KU-0059436), a PARP (poly ADP-ribose polymerase) inhibitor with single agent anticancer activity in patients with BRCA deficient ovarian cancer: results from a phase I study [abstract no. 5510]. J Clin Oncol 2008; 26 Suppl.: 295s

    Article  CAS  Google Scholar 

  118. Hennessy BT, Timms KM, Carey MS, et al. Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP rirbose) polymerase inhibitors in ovarian cancer. J Clin Oncol 2010; 28: 3570–6

    Article  PubMed  Google Scholar 

  119. Esteller M, Silva JM, Dominguez G, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 2000; 92: 564–9

    Article  PubMed  CAS  Google Scholar 

  120. Taniguchi T, Tischkowitz M, Ameziane N, et al. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med 2003; 9: 568–74

    Article  PubMed  CAS  Google Scholar 

  121. Hughes-Davies L, Huntsman D, Ruas M, et al. EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 2003; 115: 523–5

    Article  PubMed  CAS  Google Scholar 

  122. Konstantinopoulos PA, Spentzos D, Karlan BY, et al. Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J Clin Oncol 2010; 28: 3555–61

    Article  PubMed  CAS  Google Scholar 

  123. Kohler MF, Kerns BJM, Soper JT, et al. Mutation and overexpression of p53 in early-stage epithelial ovarian cancer. Obstet Gynecol 1993; 81: 643–50

    PubMed  CAS  Google Scholar 

  124. Buller RE, Runnebaum IB, Karlan BY, et al. A phase I/II trial of r/Adp53 (SCH58500) gene replacement in recurrent ovarian cancer. Cancer Gene Ther 2002; 9: 553–66

    Article  PubMed  CAS  Google Scholar 

  125. Samudio IJ, Duvvuri S, Clise-Dwyer K, et al. Activation of p53 signaling by MI-63 induces apoptosis in acute myeloid leukemia cells. Leuk Lymphoma 2010; 51: 911–9

    Article  PubMed  CAS  Google Scholar 

  126. Cohen C, Lohmann CM, Cotsonis G, et al. Survivin expression in ovarian carcinoma: correlation with apoptotic markers and prognosis. Mod Pathol 2003; 16: 574–83

    Article  PubMed  Google Scholar 

  127. Barvaux VA, Lorigan P, Ranson M, et al. Sensitization of a human ovarian cancer cell line to temzolomide by simultaneous attenuation of the Bcl-2 antiapoptotic protein and DNA repair by 06-alkylguanine-DNA alkyltransferase. Mol Cancer Ther 2004; 3: 1215–20

    PubMed  CAS  Google Scholar 

  128. Li J, Feng Q, Kim JM, et al. Human ovarian cancer and cisplatin resistance: possible role of inhibitor of apoptosis proteins. Endocrinology 2001; 142: 370–80

    Article  PubMed  CAS  Google Scholar 

  129. Reed J, Hakam A, Nicosia SV, et al. Significance of Fas receptor protein expression in epithelial ovarian cancer. Hum Pathol 2005; 36: 971–6

    Article  PubMed  CAS  Google Scholar 

  130. Tomek S, Horak P, Pribill I, et al. Resistance to TRAIL-induced apoptosis in ovarian cancer cell lines is overcome by co-treatment with cytotoxic drugs. Gynecol Oncol 2004; 94: 107–14

    Article  PubMed  CAS  Google Scholar 

  131. El-Gazzar A, Wittinger M, Perco P, et al. The role of c-FLIP(L) in ovarian cancer: chaperoning tumor cells from immunosurveillance and increasing their invasive potential. Gynecol Oncol 2010; 117: 451–9

    Article  PubMed  CAS  Google Scholar 

  132. Lane D, Robert V, Grondin R, et al. Malignant ascites protect against TRAIL-induced apoptosis by activating the PI3K/AKT pathway in human ovarian carcinoma cells. Int J Cancer 2007; 121: 1227–37

    Article  PubMed  CAS  Google Scholar 

  133. Abedini MR, Muller EJ, Bergeron R, et al. AKT promotes chemoresistance in human ovarian cancer cells by modulating cisplatin-induced, p53-dependant ubiquitination of FLI-CE_like inhibitory protein. Oncogene 2010; 29: 11–25

    Article  PubMed  CAS  Google Scholar 

  134. Keen N, Taylor S. Aurora-kinase inhibitors as anti-cancer agents. Nat Rev Cancer 2004; 4: 927–36

    Article  PubMed  CAS  Google Scholar 

  135. Tanner MM, Grenman S, Koul A, et al. Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clin Cancer Res 2000; 6: 1833–9

    PubMed  CAS  Google Scholar 

  136. Landen CN, Lin YG, Immaneni A, et al. Overexpression of the centrosomal protein Aurora-A kinase is associated with poor prognosis in epithelial ovarian cancer patients. Clin Cancer Res 2007; 13: 4098–104

    Article  PubMed  CAS  Google Scholar 

  137. Macarulla T, Cervantes A, Elez E, et al. Phase I study of the selective aurora kinase inhibitor MLN8054 in patients with advanced solid tumors: safety, pharmacokinetics, and pharmacodynamics. Mol Cancer Ther. Epub 2010 Aug 19

  138. Scharer CD, Laycock N, Osunkoya AO, et al. Aurora kinase inhibitors synergize with paclitaxel to induce apoptosis in ovarian cancer cells. J Transl Med 2008; 6: 79–91

    Article  PubMed  CAS  Google Scholar 

  139. Baykal A, Thompson JA, Xu XC, et al. In situ human telomerase reverse transcriptase expression pattern in normal and neoplastic ovarian tissues. Oncol Rep 2004; 11: 297–302

    PubMed  CAS  Google Scholar 

  140. Ertem SA, Liedtke M, Chung KY, et al. The telomerase template antagonist GRN163L reduces tumor volume in a human ovarian carcinoma xenograft model [abstract no. 2839]. AACR Meet Abstr 2005: 667–8

  141. Strathdee G, Appleton K, Illand M, et al. Primary ovarian carcinomas display multiple methylator phenotypes involving known tumor suppressor genes. Am J Pathol 2001; 158: 1121–7

    Article  PubMed  CAS  Google Scholar 

  142. Wei SH, Balch C, Paik HH, et al. Prognostic DNA methylation biomarkers in ovarian cancer. Clin Cancer Res 2006; 12: 2788–94

    Article  PubMed  CAS  Google Scholar 

  143. Feng W, Marquez RT, Lu Z, et al. Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Cancer 2008; 112: 1489–502

    Article  PubMed  CAS  Google Scholar 

  144. Li Y, Hu W, Shen DY, et al. Azacitidine enhances sensitivity of platinum-resistant ovarian cancer cells to carboplatin through induction of apoptosis. Am J Obstet Gynecol 2009; 200: 177.e1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used in the preparation of this review. Professor Markman acted as a consultant or received honoraria from Genentech, Cellgene, Hana Biosciences, Boehringer-Ingelheim, Morphotech, Astra Zeneca and Eli Lilly. Dr Hennessy received a Career Development Award (CDA) from the Conquer Cancer Foundation (CCF) of the American Society of Clinical Oncology (ASCO). Dr Kalachand has no conflicts of interest to declare that are relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roshni Kalachand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalachand, R., Hennessy, B.T. & Markman, M. Molecular Targeted Therapy in Ovarian Cancer. Drugs 71, 947–967 (2011). https://doi.org/10.2165/11591740-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11591740-000000000-00000

Keywords

Navigation