Skip to main content
Log in

Bayesian Estimation of Methotrexate Pharmacokinetic Parameters and Area Under the Curve in Children and Young Adults with Localised Osteosarcoma

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Methotrexate is the most efficient anticancer drug in osteosarcoma. It requires individual exposure monitoring because of the high doses used, its wide interpatient pharmacokinetic variability and the existence of demonstrated relationships between efficacy, toxicity and serum drug concentrations.

Objective

To develop a maximum a posteriori (MAP) Bayesian estimator able to predict individual pharmacokinetic parameters and exposure indices such as area under the curve (AUC) for methotrexate from a few blood samples, in order to prevent toxicity and facilitate further studies of the relationships between efficacy and exposure.

Methods

Methotrexate population pharmacokinetics were estimated by a retrospective analysis of concentration data from 40 children and young adults by using the nonparametric expectation maximisation method NPEM. A linear two-compartment model with elimination from the central compartment was assumed. Individual pharmacokinetic parameters and AUC were subsequently estimated in 30 other young patients, using MAP Bayesian estimation as implemented in two programs, ADAPT II and an inhouse program Winphar®.

Results

The pharmacokinetic parameters used in the model were the volume of the central compartment (V1) and the transfer constants (k10, k12 and k21). The mean values (with percentage coefficient of variation) obtained were: 18.24L (54.1%) and 0.41 (42.3%), 0.0168 (68.7%), and 0.1069 (61.3%) h-1, respectively. Bayesian forecasting enabled nonbiased estimation of AUC and systemic clearance using a schedule with two sampling times (6 and 24 hours after the beginning of the infusion) and either program. Collection of a third sample at 4 hours improved the precision.

Conclusion

The Bayesian adaptive method developed herein allows accurate estimation of individual exposure to methotrexate and can easily be used in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Fig. 1
Table IV
Table V
Fig. 2
Table VI

Similar content being viewed by others

References

  1. Masson E, Relling MV, Synold TW, et al. Accumulation of methotrexatepolyglutamates in lymphoblasts is a determinant of antileukemic effects in vivo. J Clin Invest 1996; 97: 73–80

    Article  PubMed  CAS  Google Scholar 

  2. Goldie JH, Price LA, Harrap KR. Methotrexate toxicity: correlation with duration of administration: plasma levels, dose and excretion pattern. Eur J Cancer 1972; 8: 409–14

    Article  PubMed  CAS  Google Scholar 

  3. Stoller RG, Hande KR, Jacobs SA, et al. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N Engl J Med 1977; 297: 630–4

    Article  PubMed  CAS  Google Scholar 

  4. Evans WE, Pratt C, Taylor RH, et al. Pharmacokinetic monitoring of high-dose methotrexate: early recognition of high-risk patients. Cancer Chemother Pharmacol 1979; 3: 161–6

    Article  PubMed  CAS  Google Scholar 

  5. Evans WE, Relling MV, Rodman JH, et al. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med 1998; 338: 499–505

    Article  PubMed  CAS  Google Scholar 

  6. Evans WE, Crom WR, Abromowitch M, et al. Clinical pharmacodynamics of high-dose methotrexate in acute lymphocytic leukemia. N Engl J Med 1986; 314: 471–7

    Article  PubMed  CAS  Google Scholar 

  7. Delepine N, Delepine G, Bacci G, et al. Influence of methotrexate dose intensity on outcome of patients with high grade osteogenic osteosarcoma: analysis of the literature. Cancer 1996; 78: 2127–35

    Article  PubMed  CAS  Google Scholar 

  8. Delepine N, Delepine G, Jasmin C, et al. Importance of age and methotrexate dosage: prognosis in children and young adults with high-grade osteosarcomas. Biomed Pharmacother 1988; 42: 257–62

    PubMed  CAS  Google Scholar 

  9. Delepine N, Delepine G, Cornille H, et al. Dose escalation with pharmacokinetics monitoring in methotrexate chemotherapy of osteosarcoma. Anticancer Res 1995; 15: 489–94

    PubMed  CAS  Google Scholar 

  10. Graf N, Winkler K, Betlemovic M, et al. Methotrexate pharmacokinetics and prognosis in osteosarcoma. J Clin Oncol 1994; 12: 1443–51

    PubMed  CAS  Google Scholar 

  11. Bacci G, Ferrari S, Delepine N, et al. Predictive factors of his-tologic response to primary chemotherapy in osteosarcoma of the extremity: study of 272 patients preoperatively treated with high-dose methotrexate, doxorubicin, and cisplatin. J Clin Oncol 1998; 16: 658–63

    PubMed  CAS  Google Scholar 

  12. Rosen G, Marcove RC, Caparros B, et al. Primary osteogenic sarcoma: the rationale for preoperative chemotherapy and delayed surgery. Cancer 1979; 43: 2163–77

    Article  PubMed  CAS  Google Scholar 

  13. Rosen G, Caparros B, Huvos A, et al. Preoperative chemotherapy for osteogenic sarcoma: selection of postoperative adjuvant chemotherapy based on the response of the primary tumor to preoperative chemotherapy. Cancer 1982; 49: 1221–30

    Article  PubMed  CAS  Google Scholar 

  14. Winkler K, Beron G, Koltz R, et al. Neoadjuvant chemotherapy for osteogenic sarcoma: results of a cooperative German/Austrian study. J Clin Oncol 1984; 2: 617–24

    PubMed  CAS  Google Scholar 

  15. Sabot C, Debord J, Roullet B, et al. Bayesian estimation and population pharmacokinetic parameters of high dose methotrexate in osteosarcoma. Clin Res Reg Affairs 1993; 10: 233–41

    Article  Google Scholar 

  16. Pignon T, Lacarelle B, Duffaud F, et al. Pharmacokinetic of high-dose methotrexate in adult osteogenic sarcoma. Cancer Chemother Pharmacol 1994; 33: 420–4

    Article  PubMed  CAS  Google Scholar 

  17. Sabot C, Debord J, Roullet B, et al. Comparison of 2- and 3-compartment models for the Bayesian estimation of methotrexate pharmacokinetics. Int J Clin Pharmacol Ther 1995; 33: 164–9

    PubMed  CAS  Google Scholar 

  18. Sabot C, Marquet P, Debord J, et al. Bayesian pharmacokinetic estimation of vinorelbine in non-small-cell lung cancer patients. Eur J Pharmacol 1998; 54: 171–5

    Article  CAS  Google Scholar 

  19. D’Argenio DZ, Schumitzky A. ADAPT II user’s guide. University of Southern California, Los Angeles (CA): Biomedical Simulations Resource, 1990

    Google Scholar 

  20. Delepine N, Desbois JC, Delepine G, et al. Individualization of the dosage of high-dose methotrexate by assaying plasma concentration: therapeutic value in osteogenic sarcoma. Bull Cancer 1989; 76: 913–8

    PubMed  CAS  Google Scholar 

  21. Raude E, Oellerich M, Weinel P, et al. High dose methotrexate: pharmacokinetics in children and young adults. Int J Clin Pharmacol Ther 1988; 26: 364–70

    CAS  Google Scholar 

  22. Jelliffe RW, Schumitzky A, Bayard D, et al. Model-based, goal oriented individualized drug therapy. Clin Pharmacokinet 1998; 34: 57–77

    Article  PubMed  CAS  Google Scholar 

  23. Jelliffe R, Bayard D, Milman M, et al. Achieving target goals most precisely using nonparametric compartmental models and ‘multiple model’ design of dosage regimens. Ther Drug Monit 2000; 22: 346–53

    Article  PubMed  CAS  Google Scholar 

  24. Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm 1981; 9: 503–12

    PubMed  CAS  Google Scholar 

  25. Bellissant E, Sebille V, Paintaud G. Methodological issues in pharmacokinetic-pharmacodynamic modelling. Clin Pharmacokinet 1998; 35: 151–66

    Article  PubMed  CAS  Google Scholar 

  26. Rousseau A, Marquet P, Debord J. Adaptive control methods for the dose individualisation of anticancer agents. Clin Pharmacokinet 2000; 38: 315–63

    Article  PubMed  CAS  Google Scholar 

  27. Odoul F, Le Guellec C, Lamagnere JP, et al. Prediction of methotrexate elimination after high-dose infusion in children with acute lymphoblastic leukemia using a population pharmacokinetic approach. Fundam Clin Pharmacol 1999; 13: 595–604

    Article  PubMed  CAS  Google Scholar 

  28. Borsi JD, Moe PJ. Systemic clearance of methotrexate in the prognosis of acute lymphoblastic leukemia in children. Cancer 1987; 60: 3020–4

    Article  PubMed  CAS  Google Scholar 

  29. Donelli MG, Zucchetti M, Robatto A, et al. Pharmacokinetics of HD-MTX in infants, children, and adolescents with non-B acute lymphoblastic leukemia. Med Pediatr Oncol 1995; 24: 154–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from Limoges University, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annick Rousseau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rousseau, A., Sabot, C., Delepine, N. et al. Bayesian Estimation of Methotrexate Pharmacokinetic Parameters and Area Under the Curve in Children and Young Adults with Localised Osteosarcoma. Clin Pharmacokinet 41, 1095–1104 (2002). https://doi.org/10.2165/00003088-200241130-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200241130-00006

Keywords

Navigation