Skip to main content
Log in

Estrogens and parkinson disease

Novel approach for neuroprotection

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Epidemiologic studies revealed that the prevalence of Parkinson disease is higher in males than in females and that the progression of the disease might be rapid in males compared with females. The reason for the gender difference is unknown; however, estrogens may be involved. Many studies have revealed that estrogens provide neuroprotective effects and that the protective mechanisms include antioxidant property and upregulation of Bcl-2, brain-derived neurotrophic factor, and glial cell-derived neurotrophic factor (GDNF). Upregulation of Bcl-2 or GDNF is mediated by nonnuclear estrogen receptor (ER) in addition to transcription regulation by ER. To avoid undesirable effect of estrogens, several selective ER modulators, raloxifene and genistein are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nurmi, E., Ruottinen, H. M., Kaasinen, V., et al. (2000). Ann. Neurol. 47, 804–808.

    Article  PubMed  CAS  Google Scholar 

  2. Pirker, W., Djamshidian, S., Asenbaum, S., et al. (2001). Mov. Disord. 17, 45–53.

    Article  Google Scholar 

  3. Bauer, R. B., Stevens, C., Reveno, W. S., and Rosenbaum, H. (1982). J. Am. Geriatr. Soc. 30, 322–325.

    PubMed  CAS  Google Scholar 

  4. Li, S. C., Schoenberg, B. S., Wang, C. C., et al. (1985). Arch. Neurol. 42, 655–657.

    PubMed  CAS  Google Scholar 

  5. Jankovic, J. and Kapadia, A. S. (2001). Arch. Neurol. 58, 1611–1615.

    Article  PubMed  CAS  Google Scholar 

  6. Leranth, C., Roth, R. H., Elswoth, J. D., Naftolin, F., Horvath, T. L., and Redmond, J. D. E. (2000). J. Neurosci. 20, 8604–8609.

    PubMed  CAS  Google Scholar 

  7. Mooradian, A. D. (1993). J. Steroid Biochem. Mol. Biol. 45, 509–511.

    Article  PubMed  CAS  Google Scholar 

  8. Negre Salvayre, A., Pieraggi, M. T., Mabile, L., and Salvayre, R. (1993). Atherosclerosis 99, 207–217.

    Article  PubMed  CAS  Google Scholar 

  9. Rifici, V. A. and Khachadurian, A. K. (1992). Metabolism 41, 1110–1114.

    Article  PubMed  CAS  Google Scholar 

  10. Keller, J. N., Germeyer, A., Begley, J. G., and Mattson, M. P. (1997). J. Neurosci. Res. 50, 522–530.

    Article  PubMed  CAS  Google Scholar 

  11. Behl, C., Skutella, T., Lezoualc’h, F., et al. (1997). Mol. Pharmacol. 51, 535–541.

    PubMed  CAS  Google Scholar 

  12. Sawada, H., Ibi, M., Kihara, T., Urushitani, M., Akaike, A., and Shimohama, S. (1998). J. Neurosci. Res. 54, 707–719.

    Article  PubMed  CAS  Google Scholar 

  13. Gridley, K. E., Green, P. S., and Simpkins, J. W. (1998). Mol. Pharmacol. 54, 874–880.

    PubMed  CAS  Google Scholar 

  14. Ambani, L. M., Van Woert, M. H., and Murphy, S. (1975). Arch. Neurol. 32, 114–118.

    PubMed  CAS  Google Scholar 

  15. Perillo, B., Sasso, A., Abbondanza, C., and Palumbo, G. (2000). Mol. Cell. Biol. 20, 2890–2901.

    Article  PubMed  CAS  Google Scholar 

  16. Honda, K., Sawada, H., Kihara, T., et al. (2000). J. Neurosci. Res. 60, 321–327.

    Article  PubMed  CAS  Google Scholar 

  17. Honda, K., Shimohama, S., Sawada, H., et al. (2001). J. Neurosci. Res. 64, 466–475.

    Article  PubMed  CAS  Google Scholar 

  18. Lee, S. J. and McEwen, B. S. (2001). Annu. Rev. Pharmacol. Toxicol. 41, 569–591.

    Article  PubMed  CAS  Google Scholar 

  19. Simpkins, J. W., Green, P. S., Gridley, K. E., Singh, M., de Fiebre, N. C., and Rajakumar, G. (1997). Am. J. Med. 103, 19S-25S.

    Article  PubMed  CAS  Google Scholar 

  20. Ivanova, T., Karolczak, M., and Beyer, C. (2002). Endocrinology 143, 3175–3178.

    Article  PubMed  CAS  Google Scholar 

  21. Xie, T., Ho, S. L., and Ramsden, D. (1999). Mol. Pharmacol. 56, 31–38.

    PubMed  CAS  Google Scholar 

  22. Tsang, K. L., Ho, S. L., and Lo, S. K. (2000). Neurology 54, 2292–2298.

    PubMed  CAS  Google Scholar 

  23. Burns, R. S., Chiueh, C. C., Markey, S. P., Ebert, M. H., Jacobowitz, D. M., and Kopin, I. J. (1983). Proc. Natl. Acad. Sci. USA 80, 4546–4550.

    Article  PubMed  CAS  Google Scholar 

  24. Langston, J. W., Ballard, P., Tetrud, J. W., and Irwin, I. (1983). Science 219, 979–980.

    Article  PubMed  CAS  Google Scholar 

  25. Naoi, M., Maruyama, W., Dostert, P., and Hashizume, Y. (1997). J. Neural Transm. 50(Suppl.), 89–105.

    CAS  Google Scholar 

  26. Maruyama, W., Strolin-Benedetti, M., and Naoi, M. (2000). Neurobiology 8, 55–68.

    PubMed  CAS  Google Scholar 

  27. Ramsay, R. R., Salach, J. I., and Singer, T. P. (1986). Biochem. Biophys. Res. Commun. 134, 743–748.

    Article  PubMed  CAS  Google Scholar 

  28. Mizuno, Y., Sone, N., and Saitoh, T. (1987). J. Neurochem. 48, 1787–1793.

    Article  PubMed  CAS  Google Scholar 

  29. Gelinas, S. and Martinoli, M. G. (2002). J. Neurosci. Res. 70, 90–96.

    Article  PubMed  CAS  Google Scholar 

  30. Sawada, H., Ibi, M., Kihara, T., et al. (2002). Neuropharmacology 42, 1056–1064.

    Article  PubMed  CAS  Google Scholar 

  31. Callier, S., Le Saux, M., Lhiaubet, A. M., Di Paolo, T., Rostene, W., and Pelaprat, D. (2002). J. Neurochem. 80, 307–316.

    Article  PubMed  CAS  Google Scholar 

  32. Grandbois, M., Morissette, M., Callier, S., and Di Paolo, T. (2000). Neuroreport 11, 343–346.

    Article  PubMed  CAS  Google Scholar 

  33. Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S., and Gustafsson, J. A. (1996). Proc. Natl. Acad. Sci. USA 93, 5925–5930.

    Article  PubMed  CAS  Google Scholar 

  34. Shughrue, P. J., Lane, M. V., and Merchenthaler, I. (1997). J. Comp. Neurol. 388, 507–525.

    Article  PubMed  CAS  Google Scholar 

  35. Kuiper, G. G., Carlsson, B., Grandien, K., et al. (1997). Endocrinology 138, 863–870.

    Article  PubMed  CAS  Google Scholar 

  36. Barkhem, T., Carlsson, B., Nilsson, Y., Enmark, E., Gustafsson, J., and Nilsson, S. (1998). Mol. Pharmacol. 54, 105–112.

    PubMed  CAS  Google Scholar 

  37. Paech, K., Webb, P., Kuiper, G. G., et al. (1997). Science 277, 1508–1510.

    Article  PubMed  CAS  Google Scholar 

  38. Qiu, Y., Waters, C. E., Lewis, A. E., Langman, M. J., and Eggo, M. C. (2002). J. Endocrinol. 174, 369–377.

    Article  PubMed  CAS  Google Scholar 

  39. Kim, H. T., Kim, B. C., Kim, I. Y., et al. (2002). J. Biol. Chem. 277, 32510–32515.

    Article  PubMed  CAS  Google Scholar 

  40. Sawada, H., Ibi, M., Kihara, T., et al. (2000). FASEB J. 14, 1202–1214.

    PubMed  CAS  Google Scholar 

  41. Linford, N. J. and Dorsa, D. M. (2002). Steroids 67, 1029–1040.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Shimohama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawada, H., Shimohama, S. Estrogens and parkinson disease. Endocr 21, 77–79 (2003). https://doi.org/10.1385/ENDO:21:1:77

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:21:1:77

Key Words

Navigation