Skip to main content

Advertisement

Log in

Biological and Genetic Characteristics of Tumor-Initiating Cells in Colon Cancer

  • Gastrointestinal Oncology
  • Original Paper
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Human prominin-1 (PROM1, CD133) was used as a marker to detect stem cells (progenitor cells) and cancer stem cells (tumor-initiating cells) in various tissues. The purpose of this study was to investigate the biological and genetic characteristics of tumor-initiating cells in colon cancer with both in vitro and in vivo analyses.

Methods

The CD133 expression of 12 colon cancer cell lines was evaluated. CD133+ cells were isolated by flow cytometry and examined for in vivo tumor formation, in vitro proliferation, colony formation, and invasion ability. Additionally, we used microarray analysis to compare gene expression profiles between CD133+ and CD133 isolated cells.

Results

CD133+ cells were found in 5 of 12 colon cancer cell lines. Isolated CD133+ cells from the HT29 colon cancer cell line exhibited a higher tumorigenic potential than CD133 cells in the in vivo tumor formation assay. Furthermore, it was shown that CD133+ cells are more proliferative and have higher colony-forming and invasive abilities than CD133 cells in vitro. Microarray analysis found differential gene expression correlating with CD133 expression.

Conclusions

It was confirmed that CD133+ cells in colon cancer are useful markers for the detection of tumor-initiating cells. Intimate biological and genetic features of CD133+ cells in colon cancer cell lines were also revealed. The biological characteristics of CD133+ cells and differentially expressed genes in these cells will help elucidate more details of tumor-initiating cells in colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1.
FIG 2.
FIG 3.
FIG 4.

Similar content being viewed by others

Reference

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin 2006;56:106–30

    Article  PubMed  Google Scholar 

  2. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105–11

    Article  PubMed  CAS  Google Scholar 

  3. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005;434:843–50

    Article  PubMed  CAS  Google Scholar 

  4. Polyak K, Hahn WC. Roots and stems: stem cells in cancer. Nat Med 2006;12:296–300

    Article  PubMed  CAS  Google Scholar 

  5. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003;3:895–902

    Article  PubMed  CAS  Google Scholar 

  6. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature 1994;367:645–8

    Article  PubMed  CAS  Google Scholar 

  7. Wulf GG, Wang RY, Kuehnle I, et al. A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood 2001;98:1166–73

    Article  PubMed  CAS  Google Scholar 

  8. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100:3983–8

    Article  PubMed  CAS  Google Scholar 

  9. Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 2007;104:973–8

    Article  PubMed  CAS  Google Scholar 

  10. Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res 2007;67:1030–7

    Article  PubMed  CAS  Google Scholar 

  11. Haraguchi N, Utsunomiya T, Inoue H, et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells 2006;24:506–13

    Article  PubMed  CAS  Google Scholar 

  12. Shmelkov SV, St Clair R, Lyden D, Rafii S. AC133/CD133/prominin-1. Int J Biochem Cell Biol 2005;37:715–9

    Article  PubMed  CAS  Google Scholar 

  13. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000;95:952–8

    PubMed  CAS  Google Scholar 

  14. Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997;90:5002–12

    PubMed  CAS  Google Scholar 

  15. Uchida N, Buck DW, He D, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 2000;97:14720–5

    Article  PubMed  CAS  Google Scholar 

  16. Corbeil D, Roper K, Hellwig A, et al. The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 2000;275:5512–20

    Article  PubMed  CAS  Google Scholar 

  17. Weigmann A, Corbeil D, Hellwig A, Huttner WB. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci U S A 1997;94:12425–30

    Article  PubMed  CAS  Google Scholar 

  18. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 2004;117:3539–45

    Article  PubMed  CAS  Google Scholar 

  19. Torrente Y, Belicchi M, Sampaolesi M, et al. Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 2004;114:182–95

    PubMed  CAS  Google Scholar 

  20. Maw MA, Corbeil D, Koch J, et al. A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 2000;9:27–34

    Article  PubMed  CAS  Google Scholar 

  21. Miraglia S, Godfrey W, Yin AH, et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 1997;90:5013–21

    PubMed  CAS  Google Scholar 

  22. Bhatia M. AC133 expression in human stem cells. Leukemia 2001;15:1685–8

    PubMed  CAS  Google Scholar 

  23. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63:5821–8

    PubMed  CAS  Google Scholar 

  24. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature 2004;432:396–401

    Article  PubMed  CAS  Google Scholar 

  25. Yin S, Li J, Hu C, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 2007;120:1436–42

    Article  CAS  Google Scholar 

  26. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445:106–10

    Article  PubMed  CAS  Google Scholar 

  27. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007;445:111–5

    Article  PubMed  CAS  Google Scholar 

  28. Mori M, Mimori K, Yoshikawa Y, et al. Analysis of the gene-expression profile regarding the progression of human gastric carcinoma. Surgery 2002;131:S39–47

    Article  PubMed  Google Scholar 

  29. Ogawa K, Utsunomiya T, Mimori K, et al. Clinical significance of human kallikrein gene 6 messenger RNA expression in colorectal cancer. Clin Cancer Res 2005;11:2889–93

    Article  PubMed  CAS  Google Scholar 

  30. Albini A, Iwamoto Y, Kleinman HK, et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 1987;47:3239–45

    PubMed  CAS  Google Scholar 

  31. Nishida K, Mine S, Utsunomiya T, et al. Global analysis of altered gene expressions during the process of esophageal squamous cell carcinogenesis in the rat: a study combined with a laser microdissection and a cDNA microarray. Cancer Res 2005;65:401–9

    PubMed  CAS  Google Scholar 

  32. Quackenbush J. Microarray data normalization and transformation. Nat Genet 2002;32:496501

    Article  CAS  Google Scholar 

  33. Brazma A, Hingamp P, Quackenbush J, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 2001;29:365–71

    Article  PubMed  CAS  Google Scholar 

  34. Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Stat Med 1990;9:811–8

    Article  PubMed  CAS  Google Scholar 

  35. Ponti D, Costa A, Zaffaroni N, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005;65:5506–11

    Article  PubMed  CAS  Google Scholar 

  36. Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A 2004;101:781–6

    Article  PubMed  CAS  Google Scholar 

  37. Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 2006;351:820–4

    Article  PubMed  CAS  Google Scholar 

  38. Blazek ER, Foutch JL, Maki G. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys 2007;67:1–5

    PubMed  CAS  Google Scholar 

  39. Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 2006;5:67

    Article  PubMed  CAS  Google Scholar 

  40. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006;444:756–60

    Article  PubMed  CAS  Google Scholar 

  41. Moore KA, Lemischka IR. Stem cells and their niches. Science 2006;311:1880–5

    Article  PubMed  CAS  Google Scholar 

  42. Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell 2001;105:829–41

    Article  PubMed  CAS  Google Scholar 

  43. De Paiva CS, Pflugfelder SC, Li DQ. Cell size correlates with phenotype and proliferative capacity in human corneal epithelial cells. Stem Cells 2006;24:368–75

    Article  PubMed  Google Scholar 

  44. Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 2007;104:10158–63

    Article  PubMed  CAS  Google Scholar 

  45. Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004;118:149–61

    Article  PubMed  CAS  Google Scholar 

  46. Grozdanov PN, Yovchev MI, Dabeva MD. The oncofetal protein glypican-3 is a novel marker of hepatic progenitor/oval cells. Lab Invest 2006;86:1272–84

    Article  PubMed  CAS  Google Scholar 

  47. Ford-Perriss M, Turner K, Guimond S, et al. Localisation of specific heparan sulfate proteoglycans during the proliferative phase of brain development. Dev Dyn 2003;227:170–84

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank T. Shimooka, K. Ogata, M. Kasagi, Y. Nakagawa, M. Utou, Y. Miura, A. Harada, S. Matsuzaki, M. Ohkuma, S. Hirasaki, and K. Ishikawa for their technical assistance and advice. This work was supported in part by the following grants and foundations: CREST, Japan Science and Technology Agency; Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research, grants 17109013, 17591411, 17591413, 18390367, 18590333, 18659384 and 18790964; The Ministry of Education, Culture, Sports, Science and Technology Grant-in-Aid for Scientific Research on Priority Areas, grant 18015039; Third Term Comprehensive Ten-Year Strategy for Cancer Control, grant 16271201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Mori MD, PhD.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ieta, K., Tanaka, F., Haraguchi, N. et al. Biological and Genetic Characteristics of Tumor-Initiating Cells in Colon Cancer. Ann Surg Oncol 15, 638–648 (2008). https://doi.org/10.1245/s10434-007-9605-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-007-9605-3

Keywords

Navigation