Skip to main content

Advertisement

Log in

Mechanisms of Pharmaceutical Aerosol Deposition in the Respiratory Tract

  • Review Article
  • Theme: Advances in Formulation and Device Technologies for Pulmonary Drug Delivery
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Aerosol delivery is noninvasive and is effective in much lower doses than required for oral administration. Currently, there are several types of therapeutic aerosol delivery systems, including the pressurized metered-dose inhaler, the dry powder inhaler, the medical nebulizer, the solution mist inhaler, and the nasal sprays. Both oral and nasal inhalation routes are used for the delivery of therapeutic aerosols. Following inhalation therapy, only a fraction of the dose reaches the expected target area. Knowledge of the amount of drug actually deposited is essential in designing the delivery system or devices to optimize the delivery efficiency to the targeted region of the respiratory tract. Aerosol deposition mechanisms in the human respiratory tract have been well studied. Prediction of pharmaceutical aerosol deposition using established lung deposition models has limited success primarily because they underestimated oropharyngeal deposition. Recent studies of oropharyngeal deposition of several drug delivery systems identify other factors associated with the delivery system that dominates the transport and deposition of the oropharyngeal region. Computational fluid dynamic simulation of the aerosol transport and deposition in the respiratory tract has provided important insight into these processes. Investigation of nasal spray deposition mechanisms is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Newman SP. Can lung deposition data act as a surrogate for the clinical response to inhaled asthma drugs. Br J Clin Pharm. 2000;49:529–37.

    Article  CAS  Google Scholar 

  2. Derom E, Pauwels R. Relationship between airway deposition and effects for inhaled bronchodilators. In: Dalby R, Byron PR, Farr SJ, editors. Respiratory drug delivery VI. Buffalo Grove: Interpharm Press; 1998. p. 35–44.

    Google Scholar 

  3. Cheng YS. Modeling aerosol drug delivery. In: Gradon L, Marijnissen J, editors. Optimization of aerosol drug delivery. Dordrecht: Kluwer; 2003. p. 165–88.

    Chapter  Google Scholar 

  4. Newman S, Bennett WD, Biddiscombe M, Devadason SG, Dolovich M, Fleming J, et al. Standardization of techniques for using planar (2D) imaging for aerosol deposition assessment of orally inhaled products. J Aerosol Med Pulmon Drug Deliv. 2012;25:S10–28.

    Google Scholar 

  5. Fleming J, Bailey DL, Chan HK, Conway J, Kuehl PJ, Laube BL, et al. Standardization of techniques for using single-photon emission computed tomography (SPECT) for aerosol deposition assessment of orally inhaled products. J Aerosol Med Pulmon Drug Deliv. 2012;25:S29–51.

    Google Scholar 

  6. ICRP. Human respiratory tract model for radiological protection. London: Pergamon; 1994. Publication 66, Annals of ICRP.

    Google Scholar 

  7. NCRP. Deposition, retention, and dosimetry of inhaled radioactive substances. Bethesda: National Council on Radiation Protection and Measurements; 1997. NCRP Report No. 125.

    Google Scholar 

  8. Anjilvel S, Asgharian B. A multiple-path model of particle deposition in the rat lung. Fund Appl Toxicol. 1995;28:41–50.

    Article  CAS  Google Scholar 

  9. Ali M. Pulmonary drug delivery. In: Kulkarni V, editor. Handbook of non-invasive drug delivery systems. New York: Elsevier; 2010. p. 209–46.

    Chapter  Google Scholar 

  10. Martonen TB. Mathematical model for the selective deposition of inhaled pharmaceuticals. J Pharm Sci. 1993;82:1191–9.

    Article  CAS  PubMed  Google Scholar 

  11. Pritchard JN, Layzell GR, Miller JF. Correlation of cascade impactor data with measurements of lung deposition for pharmaceutical aerosols. In: Drug delivery to the lungs VII. London: The Aerosol Society; 1996. p. 101–4.

    Google Scholar 

  12. Price A. Validation of aerosol deposition models for pharmaceutical purposes: the way forward. In: Dalby R, Byron PR, Farr SJ, Peart J, editors. Respiratory drug delivery VII. Buffalo Grove: Interpharm Press; 2000. p. 197–208.

    Google Scholar 

  13. Clark AR, Newman SP, Dasovich N. Mouth and oropharyngeal deposition of pharmaceutical aerosols. J Aerosol Med. 1998;11:S116–21.

    PubMed  Google Scholar 

  14. DeHaan WH, Finlay WH. In vitro monodisperse aerosol deposition in a mouth and throat with six different inhalation devices. J Aerosol Med. 2001;14:361–7.

    Article  CAS  PubMed  Google Scholar 

  15. DeHaan WH, Finlay WH. Predicting extrathoracic deposition from dry powder inhalers. J Aerosol Sci. 2004;35:309–31.

    Article  CAS  Google Scholar 

  16. Kleinstreuer C, Shi HW, Zhang Z. Computational analyses of a pressurized metered dose inhaler and a new drug-aerosol targeting methodology. J Aerosol Med. 2007;20:294–304.

    Article  CAS  PubMed  Google Scholar 

  17. Stahlhofen W, Gebhart J, Heyder J. Experimental determination of the regional deposition of aerosol particles in the human respiratory tract. Am Ind Hyg Assoc J. 1980;41:385–98.

    Article  CAS  PubMed  Google Scholar 

  18. Emmett PC, Aitken RJ, Hannan WJ. Measurements of the total and regional deposition of inhaled particles in the human respiratory tract. J Aerosol Sci. 1982;13:549–60.

    Article  CAS  Google Scholar 

  19. Heyder J, Gebhart J, Rudolf G, Schiller CF, Stahlhofen W. Deposition of particles in the human respiratory tract in the size range of 0.005-15 um. J Aerosol Sci. 1986;17:811–25.

    Article  Google Scholar 

  20. Cheng YS, Zhou Y, Chen BT. Particle deposition in a cast of human oral airways. Aerosol Sci Technol. 1999;31:286–300.

    Article  CAS  Google Scholar 

  21. Smith SM, Cheng YS, Yeh HC. Deposition of ultrafine particles in human tracheobronchial airways of adults and children. Aerosol Sci Technol. 2001;35:697–709.

    Article  CAS  Google Scholar 

  22. Zhou Y, Cheng YS. Particle deposition in a cast of human tracheobronchial airways. Aerosol Sci Technol. 2005;39:492–500.

    Article  CAS  Google Scholar 

  23. Asgharian B, Price OT. Deposition of ultrafine (nano) particles in the human lung. Inhal Toxicol. 2007;19:1045–54.

    Article  CAS  PubMed  Google Scholar 

  24. Phalen RF, Hinds WC, John W, Lioy PJ, Lippmann M, McCawley MA, et al. Rationale and recommendations for particle size-selective sampling in the workplace. Appl Ind Hyg. 1986;1:3–12.

    Article  CAS  Google Scholar 

  25. Soderholm SC. Proposed international conventions for particle size-selective sampling. Ann Occup Hyg. 1989;33:301–20.

    Article  CAS  PubMed  Google Scholar 

  26. Kwok PCL, Chan HK. Electrostatics of pharmaceutical inhalation aerosols. J Pharma Pharmacol. 2009;61:1587–99.

    Article  CAS  Google Scholar 

  27. Melandri C, Tarroni G, Prodi V, DeZaiacomo T, Formignani M, Lomardi CC. Deposition of charged particles in the human airway. J Aerosol Sci. 1983;14:657–69.

    Article  Google Scholar 

  28. Yu CP. Precipitation of unipolarly charged particles in cylindrical and spherical vessels. J Aerosol Sci. 1977;8:237–42.

    Article  Google Scholar 

  29. Yu CP, Chandra K. Depoition of charged particles from laminar flows in rectangular and cylindrical channels by image force. J Aerosol Sci. 1978;9:175–80.

    Article  Google Scholar 

  30. Cohen BS, Qiong JQ, Fang CP, Li W. Deposition of charged particles on lung airways. Health Phys. 1998;74:554–60.

    Article  CAS  PubMed  Google Scholar 

  31. Hickey AJ, Martonen TB, Yang Y. Theoretical relationship of lung deposition to the fine particle fraction of inhalation aerosols. Pharmceutica Acta Helvetiae. 1996;71:185–90.

    Article  CAS  Google Scholar 

  32. Newman SP. How well do in vitro particle size measurements predict drug delivery in vivo. J Aerosol Med. 1998;11:S97–S104.

    PubMed  Google Scholar 

  33. Marple VA, Olson BA, Miller NC. The role of inertial particle collectors in evaluating pharmaceutical aerosol delivery systems. J Aerosol Med. 1998;11:S139–53.

    PubMed  Google Scholar 

  34. Agnew JE. Characterizing lung aerosol penetration. J Aerosol Med. 1991;4:237–49.

    Article  Google Scholar 

  35. Clark AR. In vitro assessment of spacers and reservoir devices. In: Dalby R, Evans R, editors. Respiratory drug delivery II. Boca Raton: CRC Press; 1990. p. 27–31.

    Google Scholar 

  36. Newman SP, Pitcairn G, Hooper G, Knoch M. Efficient drug delivery to the lungs from a continuously operated open-vent nebulizer and low pressure compressor system. Eur Respir J. 1994;7:1177–81.

    CAS  PubMed  Google Scholar 

  37. Barry PW, O'Callaghan C. In vitro analysis of the output of salbutamol from different nebulizers. Eur Respir J. 1999;1130:1164–9.

    Article  Google Scholar 

  38. Leach CL, Davidson PJ, Bouhuys A. Improved airway targeting with the CFC-free HFA-beclomethasone metered-dose inhaler compared with CFC-beclomethasone. Eur Respir J. 1998;12:1346–53.

    Article  CAS  PubMed  Google Scholar 

  39. Newman SP, Moren F, Trofast E, Talaee N, Clarke SW. Deposition and clinical efficiency of terbutaline sulphate from turbuhaler, a new multi-dose powder inhaler. Eur Respir J. 1989;2:247–52.

    CAS  PubMed  Google Scholar 

  40. Newman SP, Clarke AR, Talaee N, Clarke SW. Pressurized aerosol deposition in the human lung with and without an "open" spacer device. Thorax. 1989;44:706–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Newman SP, Clarke AR, Talaee N, Clarke SW. Lung deposition of 5 mg Intal from a pressurized metered dose inhaler assessed by radiotracer technique. Int J Pharm. 1991;74:203–8.

    Article  CAS  Google Scholar 

  42. Richards J, Hirst P, Pitcairn G, Mahashbde S, Abramowitz W, Nolting A, et al. Deposition and pharmacokinetics of flunisolide delivered from pressurized inhalers containing non-CFC and CFC propellants. J Aerosol Med. 2001;14:197–208.

    Article  CAS  PubMed  Google Scholar 

  43. Hirst PH, Pitcairn G, Weers JG, Tarara TE, Clark AR, Dellamary LA, et al. In vivo lung deposition of hollow porous particles from a pressurized metered dose inhaler. Pharmaceut Res. 2002;19:258–63.

    Article  CAS  Google Scholar 

  44. Cheng YS, Fu C, Yazzie D, Zhou Y. Respiratory deposition patterns of salbutamol pMDI with CFC and HFA-134a formulations in a human airway replica. J Aerosol Med. 2001;14:255–66.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Gilbertson K, Finlay WH. In vivo-in vitro comparison of deposition in three mouth-throat models with Qvar® and Turbuhaler® inhalers. J Aerosol Med. 2007;20:227–35.

    Article  CAS  PubMed  Google Scholar 

  46. Borgstrom L, Bondesson E, Moren F, Trofast E, Newman SP. Lung deposition of budesonide inhaled via Turbuhaler: a comparison with terbutaline sulphate in normal subjects. Eur Respir J. 1994;7:73.

    Article  Google Scholar 

  47. Newman SP, Pitcairn G, Adkin DA, Vidgren MT, Silvasti M. Comparison of beclomethasone dipropionate delivery by Easyhaler dry powder inhaler and PMDI plus large volume spacer. J Aerosol Med. 2001;14:217–25.

    Article  CAS  PubMed  Google Scholar 

  48. Pitcairn GR, Lunghetti G, Ventura P, Newman S. A comparison of the lung deposition of salbutamol inhaled from a new dry powder inhaler at two inhaled flow rates. Int J Pharma. 1994;102:11–8.

    Article  CAS  Google Scholar 

  49. Pitcairn GR, Lankinen T, Valkila E, Newman SP. Lung deposition of salbutamol inhaled from the Leiras metered dose powder inhaler. J Aerosol Med. 1995;8:307–11.

    Article  Google Scholar 

  50. Cheng KH, Cheng YS, Yeh HC, Swift DL. Measurements of airway dimensions and calculation of mass transfer characteristics of the human oral passage. J Biomed Eng. 1997;119:475–82.

    Google Scholar 

  51. Kleinstreuer C, Zhang ZQ. Laminar-to-turbulent fluid-particle flows in a human airway model. Int J Multi Flow. 2003;29:271–89.

    Article  CAS  Google Scholar 

  52. Zhang Z, Kleinstreuer C, Kim CS, Cheng YS. Vaporizing microdroplet inhalation, transport, and deposition in a human upper airway model. Aerosol Sci Technol. 2004;38:36–49.

    Article  Google Scholar 

  53. Fadl A, Wang J, Zhang Z, Cheng YS. Effects of MDI spray angle on aerosol penetration efficiency through an oral airway cast. J Aerosol Sci. 2007;38:865–84.

    Article  Google Scholar 

  54. Xi J, Longest PW. Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway. Ann Bio Eng. 2007;35:560–81.

    Article  Google Scholar 

  55. Stapleton KW, Guentsch E, Hoskinson MK, Finlay WH. On the suitability of k-ε turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment. J Aerosol Sci. 2000;31:739–49.

    Article  CAS  Google Scholar 

  56. Matida EA, DeHaan WH, Finlay WH, Lange CF. Simulation of particle deposition in an idealized mouth with different small diameter inlets. Aerosol Sci Technol. 2003;37:924–32.

    Article  CAS  Google Scholar 

  57. Gric B, Finlay WH, Burnell PKP, Heenan AF. In vitro intersubject and intrasubject deposition measurements in realistic mouth-throat geometries. J Aerosol Med. 2004;35:1025–40.

    Article  Google Scholar 

  58. Zhou Y, Sun JJ, Cheng YS. Comparison of deposition in the USP and physical mouth-throat models with solid and liquid particles. J Aerosol Med Pulmon Drug Deliv. 2011;24:277–84.

    Article  CAS  Google Scholar 

  59. Hochrainer D, Holz H, Kreher C, Scaffidi L, Spallek M, Wachtel H. Comparison of the aerosol velocity and spray duration of Respimat soft mist inhaler and pressurized metered dose inhalers. J Aerosol Sci. 2005;18:273–82.

    Article  CAS  Google Scholar 

  60. Dunbar CA, Watkins AP, Miller JF. An experimental investigation of the spray issued from a pMDI using laser diagnostic techniques. J Aerosol Med. 1997;10:351–68.

    Article  CAS  PubMed  Google Scholar 

  61. Shi HW, Kleinstreuer C. Simulation and analysis of high-speed droplet spray dynamics. J Fluid Eng. 2007;129:621–33.

    Article  Google Scholar 

  62. Newman SP, Moren F, Clarke SW. Deposition pattern of nasal sprays in man. Rhinol. 1987;26:111–20.

    Google Scholar 

  63. Thorsson L, Newman SP, Weisz A, Trofast E, Moren F. Nasal distribution of budesonide inhaled via a powder inhaler. Rhinol. 1993;31:7–10.

    CAS  Google Scholar 

  64. Cheng YS, Holmes TD, Gao J, Guilmette RA, Li S, Surakitbanharn Y, et al. Characterization of nasal spray pumps and deposition pattern in a replica of the human nasal airway. J Aerosol Med. 2001;14:267–70.

    Article  CAS  PubMed  Google Scholar 

  65. Foo MY, Cheng YS, Su WC, Donovan MD. The influence of spray properties on intranasal deposition. J Aerosol Med. 2007;20:495–508.

    Article  CAS  PubMed  Google Scholar 

  66. Suman JD, Laube BL, Lin C, Brouet G, Dalby R. Validity of in vitro tests on aqueous spray pumps as surrogates for nasal deposition. Pharmaceut Res. 2002;19:1–6.

    Article  CAS  Google Scholar 

  67. Al-Ghananeem AM, Sandefer EP, Doll WJ, Page RC, Chang Y, Digenis GA. Gamma scintigraphy for testing bioequivalence: a case study on two cromolyn sodium nasal spray preparations. Int Pharm. 2008;357:70–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institute for Occupational Safety and Health (NIOSH) contracts 254-2010-M-36304 and 214-2012-M-52048 and NIOSH grants R01 OH009801 and R01 OH010062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung Sung Cheng.

Additional information

Guest Editors: Paul B. Myrdal and Steve W. Stein

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Y.S. Mechanisms of Pharmaceutical Aerosol Deposition in the Respiratory Tract. AAPS PharmSciTech 15, 630–640 (2014). https://doi.org/10.1208/s12249-014-0092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0092-0

KEY WORDS

Navigation