Skip to main content
Log in

On the analysis of the mechanisms of the strain-induced dissolution of phases in metals

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The relationship between the processes of the nanostructure evolution and the strain-induced dissolution of phases upon severe plastic deformation is studied. The known mechanisms of these phenomena are analyzed, and new ones are proposed. The extended metastable and equilibrium phase diagram used for the analysis of the deformed nanostructured solid solution allows for the relationships of the equilibrium states of the system of bulk phases with the equilibrium and metastable states of the systems of planar, linear, and point defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. V. Sagaradze, “Deformation-Induced Phase Transformations and Their Effect on the Structure and Properties of Alloys,” in New Perspective Materials and New Technologies (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2001), pp. 158–195.

    Google Scholar 

  2. N. D. Zemtsova, V. V. Sagaradze, L. N. Romashov, et al., “Decreasing Curie Temperature of Aging Alloys during Plastic Deformation,” Fiz. Met. Metalloved. 47(5), 937–942 (1979).

    CAS  Google Scholar 

  3. D. V. Wilson, “Effect of Plastic Deformation on Carbide Precipitation in Steel,” Acta Mater. 5(6), 293–302 (1957).

    Article  CAS  Google Scholar 

  4. M. V. Belous and V. T. Cherepin, “Changes in the Carbide Phase of Steel under the Effect of Cold Plastic Deformation,” Fiz. Met. Metalloved. 12(5), 685–692 (1961).

    CAS  Google Scholar 

  5. V. N. Gridnev and V. G. Gavrilyuk, “Cementite Decomposition upon Plastic Deformation of Steel,” Metallofizika 4(3), 84–87 (1982).

    Google Scholar 

  6. V. G. Gavrilyuk, Carbon Distribution in Steel (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  7. V. A. Shabashov, L. G. Korshunov, A. G. Mukoseev, et al., “Phase Transformations in U13 Steel upon Severe Cold Deformation,” in Problems of Nanocrystalline Materials (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2002), pp. 111–133.

    Google Scholar 

  8. V. A. Shabashov, L. G. Korshunov, A. G. Mukoseev, et al., “Deformation-Inducted Phase Transformation in High-Carbon Steel,” Mater. Sci. Eng., A 346, 196–207 (2003).

    Article  Google Scholar 

  9. J. Languillaume, G. Kapetski, and B. Baudelet, “Cementite Dissolution in Heavily Drawn Pearlitic Steel Wires,” Acta Mater. 45(3), 1201–1212 (1997).

    Article  CAS  Google Scholar 

  10. W. J. Nam, Ch. M. Bae, S. J. Oh, and S.-J. Kwon, “Effect of Interlamellar Spacing on Cementite Dissolution during Wire Drawing of Pearlitic Steel Wires,” Scr. Mater. 42(5), 457–463 (2000).

    Article  CAS  Google Scholar 

  11. K. Hono, M. Ohnuma, M. Murayama, et al., “Cementite Decomposition in Heavily Drawn Pearlite Steel Wires,” Scr. Mater. 44(6), 977–983 (2001).

    Article  CAS  Google Scholar 

  12. Yu. Ivanisenko, W. Lojkowski, R.Z. Valiev, and H.-J. Fecht, “The Mechanism of Formation of Nanostructure and Dissolution Cementite in a Pearlitic Steel during High Pressure Torsion,” Acta Mater. 51(18), 5555–5570 (2003).

    Article  CAS  Google Scholar 

  13. V. L. Gapontsev and V. V. Kondrat’ev, “Diffusion Phase Transformations in Nanocrystalline Alloys under Severe Plastic Deformation,” Dokl. Ross. Akad. Nauk 385(5), 608–611 (2002) [Phys.—Dokl. 47, 576–579 (2002)].

    Google Scholar 

  14. V. L. Gapontsev, I. K. Razumov, Yu. N. Gornostyrev, et al., “Theory of Diffusional Phase Transformations in Nanocrystalline Alloys upon Severe Plastic Deformation: III. Alloys with Limited Solubility,” Fiz. Met. Metalloved. 99(4), 26–37 (2005) [Phys. Met. Metallogr. 99, 365–375 (2005)].

    CAS  Google Scholar 

  15. A. G. Kesarev, V. V. Kondrat’ev, and V. L. Gapontsev, “Anomalous Diffusion and Solid-Solution Separation under the Effect of Vacancy Sources. Stationary Stage,” Fiz. Met. Metalloved. 98(6), 18–24 (2004) [Phys. Met. Metallogr. 98, 561–567 (2004)].

    CAS  Google Scholar 

  16. Ya. E. Geguzin and M. A. Krivoglaz, Migration of Macroscopic Inclusions in Solids (Metallurgiya, Moscow, 1971; Consultants Bureau, New York, 1973).

    Google Scholar 

  17. M. L. Treudeau and R. Schulz, “High-Resolution Electron Microscopy Study of Ni-Mo Nanocrystals Prepared by High-Energy Mechanical Alloying,” Mater. Sci. Eng., A 134, 1361–1367 (1991).

    Article  Google Scholar 

  18. V. G. Grayznov, I. A. Polonski, A. E. Romanov, and L. I. Trusov, “Size Effect of Dislocation Stability in Nanocrystals,” Phys. Rev. B: Condens. Matter 44(1), 42–46 (1991).

    Google Scholar 

  19. I. I. Novikov, Theory of Heat Treatment of Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  20. G. A. Dorofeev, E. P. Eslukov, A. V. Zagainov, et al., “Deformation-Induced Dissolution of Cementite in the Nanocomposite Material α-Fe + 60% Fe3C,” Fiz. Met. Metalloved. 98(4), 60–65 (2004) [Phys. Met. Metallogr. 98, 393–398 (2004)].

    CAS  Google Scholar 

  21. E. P. Eslukov, I. V. Povstugar, A. A. Ul’yanov, and G. A. Dorofeev, “Deformation-Induced Dissolution of Fe2B Boride in Nanocrystalline α-Fe,” Fiz. Met. Metalloved. (in press) [Phys. Met. Metallogr. (in press)].

  22. F. R. De Boer, R. Boom, W. C. M. Mattens, et al., Cohesion in Metals. Transition Metal Alloys (North-Holland, Amsterdam, 1988).

    Google Scholar 

  23. E. P. Yelsukov, G. A. Dorofeev, A. V. Zagainov, et al., “Initial Stage of Mechanical Alloying in the Fe-C System,” Mater. Sci. Eng., A 369(1–2), 16–22 (2004).

    Google Scholar 

  24. L. S. Vasil’ev and S. F. Lomaeva, “On the Analysis of Supersaturation Mechanisms of Metal Powders with Interstitial Impurities upon Mechanical Alloying,” Izv. Ross. Akad. Nauk, Met., No. 4, 48–59 (2003).

  25. L. S. Vasil’ev and S. F. Lomayeva, “On the Analysis of Mechanism of Supersaturation of Metal Powders with Interstitial Impurities during Mechanoactivation,” J. Mater. Sci. 39(16/17), 5411–5415 (2004).

    Article  CAS  Google Scholar 

  26. S. F. Lomaeva, E. P. Elsukov, G. N. Konygin, et al., “Structural and Phase State and Magnetic Parameters of High-Disperse Powders Produced by Mechanical Alloying in an Organic Medium with a Surface-Active Substance,” Kolloidn. Zh. 62(5), 644–653 (2000).

    Google Scholar 

  27. M. A. Shtremel’, Strength of Alloys. Part 1: Lattice Defects (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  28. I. Dyarmati, Non-Equilibrium Thermodynamics. Field Theory and Variational Principles (Springer, Heidelberg, 1970; Mir, Moscow, 1974).

    Google Scholar 

  29. L. Girifalco, Statistical Physics of Materials (Wiley, New York, 1973; Mir, Moscow, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.S. Vasil’ev, I.L. Lomaev, E.P. Elsukov, 2006, published in Fizika Metallov i Metallovedenie, 2006, Vol. 102, No. 2, pp. 201–213.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil’ev, L.S., Lomaev, I.L. & Elsukov, E.P. On the analysis of the mechanisms of the strain-induced dissolution of phases in metals. Phys. Metals Metallogr. 102, 186–197 (2006). https://doi.org/10.1134/S0031918X06080102

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X06080102

PACS numbers

Navigation