Skip to main content
Log in

Preventive and therapeutic effects of SkQ1-containing Visomitin eye drops against light-induced retinal degeneration

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The human retina is constantly affected by light of varying intensity, this being especially true for photoreceptor cells and retinal pigment epithelium. Traditionally, photoinduced damages of the retina are induced by visible light of high intensity in albino rats using the LIRD (light-induced retinal degeneration) model. This model allows study of pathological processes in the retina and the search for retinoprotectors preventing retinal photodamage. In addition, the etiology and mechanisms of retina damage in the LIRD model have much in common with the mechanisms of the development of age-related retinal disorders, in particular, with age-related macular degeneration (AMD). We have studied preventive and therapeutic effects of Visomitin eye drops (based on the mitochondria-targeted antioxidant SkQ1) on albino rat retinas damaged by bright light. In the first series of experiments, rats receiving Visomitin for two weeks prior to illumination demonstrated significantly less expressed atrophic and degenerative changes in the retina compared to animals receiving similar drops with no SkQ1. In the second series, the illuminated rats were treated for two weeks with Visomitin or similar drops without SkQ1. The damaged retinas of the experimental animals were repaired much more effectively than those of the control animals. Therefore, we conclude that Visomitin SkQ1-containing eye drops have pronounced preventive and therapeutic effects on the photodamaged retina and might be recommended as a photoprotector and a pharmaceutical preparation for the treatment of AMD in combination with conventional medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMD:

age-related macular degeneration

GCL:

ganglion cell layer

INL:

inner nuclear layer

IPL:

inner plexiform layer

LIRD:

light-induced retinal degeneration

ONL:

outer nuclear layer

OPL:

outer plexiform layer

PL:

photoreceptor layer

RPE:

retinal pigment epithelium

ROS:

reactive oxygen species

References

  1. Beckman, K. B., and Ames, B. N. (1998) The free radical theory of aging matures, Physiol. Rev., 78, 547–581.

    PubMed  CAS  Google Scholar 

  2. Skulachev, V. P. (2005) How to clean the dirtiest place in the cell: cationic antioxidants as intramitochondrial ROS scavengers, IUBMB Life, 57, 305–310.

    Article  PubMed  CAS  Google Scholar 

  3. Skulachev, V. P. (2006) Bioenergetic aspects of apoptosis, necrosis and mitoptosis, Apoptosis, 11, 473–485.

    Article  PubMed  CAS  Google Scholar 

  4. Jarrett, S. G., and Boulton, M. E. (2012) Consequences of oxidative stress in age-related macular degeneration, Mol. Aspects Med., 33, 399–417.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Panfoli, I. (2012) Beneficial effect of antioxidants in retinopathies: a new hypothesis, Med. Hypothesis Discov. Innov. Ophthalmol., 1, 76–79.

    PubMed  PubMed Central  Google Scholar 

  6. Newell, F. W. (1992) Ophthalmology Principles and Concepts (Mosby, C. V., ed.) 7th Edn., St. Louis.

  7. Winkler, B. S., Boulton, M. E., Gottsch, J. D., and Sternberg, P. (1999) Oxidative damage and age-related macular degeneration, Mol. Vis., 5, 32.

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Emerit, J., Edeas, M., and Bricaire, F. (2004) Neurodegenerative diseases and oxidative stress, Biomed. Pharmacother., 58, 39–46.

    Article  PubMed  CAS  Google Scholar 

  9. Roth, F., Bindewald, A., and Holz, F. G. (2004) Key pathophysiological pathways in age-related macular disease, Graefes Arch. Clin. Exp. Ophthalmol., 242, 710–716.

    Article  PubMed  Google Scholar 

  10. Kopitz, J., Holz, F. G., Kaemmerer, E., and Schutt, F. (2004) Lipids and lipid peroxidation products in the pathogenesis of age-related macular degeneration, Biochimie, 86, 825–831.

    Article  PubMed  CAS  Google Scholar 

  11. Tanito, M., Nishiyama, A., Tanaka, T., Masutani, H., Nakamura, H., Yodoi, J., and Ohira, A. (2002) Change of redox status and modulation by thiol replenishment in retinal photooxidative damage, Invest. Ophthalmol. Vis. Sci., 43, 2392–2400.

    PubMed  Google Scholar 

  12. Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A., Grigorian, E. N., Grishanova, A. Y., Iomdina, E. N., Ivashchenko, Zh. N., Katargina, L. A., Khoroshilova-Maslova, I. P., Kilina, O. V., Kolosova, N. G., Kopenkin, E. P., Korshunov, S. S., Kovaleva, N. A., Novikova, Y. P., Philippov, P. P., Pilipenko, D. I., Robustova, O. V., Saprunova, V. B., Senin, I. I., Skulachev, M. V., Sotnikova, L. F., Stefanova, N. A., Tikhomirova, N. K., Tsapenko, I. V., Shchipanova, A. I., Zinovkin, R. A., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 4. Agerelated eye disease. SkQ1 returns vision to blind animals, Biochemistry (Moscow), 73, 1317–1328.

    Article  CAS  Google Scholar 

  13. Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Y., Yaguzhinsky, L. S., Zamyatnin, A. A., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies, Biochemistry (Moscow), 73, 1273–1287.

    Article  CAS  Google Scholar 

  14. Agapova, L. S., Chernyak, B. V., Domnina, L. V., Dugina, V. B., Efimenko, A. Y., Fetisova, E. K., Ivanova, O. Y., Kalinina, N. I., Khromova, N. V., Kopnin, B. P., Kopnin, P. B., Korotetskaya, M. V., Lichinitser, M. R., Lukashev, A. L., Pletjushkina, O. Y., Popova, E. N., Skulachev, M. V., Shagieva, G. S., Stepanova, E. V., Titova, E. V., Tkachuk, V. A., Vasiliev, J. M., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells, Biochemistry (Moscow), 73, 1300–1316.

    Article  CAS  Google Scholar 

  15. Grigoryan, E. N., Novikova, Y. P., Gancharova, O. S., Kilina, O. V., and Philippov, P. P. (2012) New antioxidant SkQ1 is an effective protector of rat eye retinal pigment epithelium and choroid under conditions of long-term organotypic cultivation, Adv. Aging Res., 1, 31–37.

    Article  Google Scholar 

  16. Grigoryan, E., Novikova, Y., Kilina, O., and Philippov, P. (2013) New antioxidant SkQ1 is an effective protector of rat neural retina under conditions of long-term organotypic cultivation, Adv. Aging Res., 2, 65–71.

    Article  CAS  Google Scholar 

  17. Noell, W. K., Walker, V. S., Kang, B. S., and Berman, S. (1966) Retinal damage by light in rats, Invest. Ophthalmol., 5, 450–473.

    PubMed  CAS  Google Scholar 

  18. Stone, J., Maslim, J., Valter-Kocsi, K., Mervin, K., Bowers, F., Chu, Y., Barnett, N., Provis, J., Lewis, G., Fisher, S. K., Bisti, S., Gargini, C., Cervetto, L., Merin, S., and Peer, J. (1999) Mechanisms of photoreceptor death and survival in mammalian retina, Prog. Retin. Eye Res., 18, 689–735.

    Article  PubMed  CAS  Google Scholar 

  19. Komarek, V., Gembardt, C., Krinke, A.-L., Mahrous, T., and Schaetti, P. (2000) Synopsis of the organ anatomy, in The Laboratory Rat (Krinke, G., ed.) Academic Press, San Diego, pp. 283–319.

    Chapter  Google Scholar 

  20. Wasowicz, M., Morice, C., Ferrari, P., Callebert, J., and Versaux-Botteri, C. (2002) Long-term effects of light damage on the retina of albino and pigmented rats, Invest. Ophthalmol. Vis. Sci., 43, 813–820.

    PubMed  Google Scholar 

  21. Bennett, M. H., Dyer, R. F., and Dunn, J. D. (1972) Light induced retinal degeneration: effect upon light-dark discrimination, Exp. Neurol., 34, 434–445.

    Article  PubMed  CAS  Google Scholar 

  22. Williams, R. A., Howard, A. G., and Williams, T. P. (1985) Retinal injury on pigmented and albino rats exposed to low intensive cyclic light after unique mydriatic influence, Curr. Eye Res., 4, 97–102.

    Article  PubMed  CAS  Google Scholar 

  23. Williams, T. P., and Howell, W. L. (1983) Action spectrum of retinal light-damage in albino rats, Invest. Ophthalmol. Vis. Sci., 24, 285–287.

    PubMed  CAS  Google Scholar 

  24. Marc, R. E., Jones, B. W., Watt, C. B., Vazquez-Chona, F., Vaughan, D. K., and Organisciak, D. T. (2008) Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration, Mol. Vis., 14, 782–806.

    PubMed  PubMed Central  Google Scholar 

  25. Abler, A. S., Chang, C. J., Ful, J., Tso, M. O., and Lam, T. T. (1996) Photic injury triggers apoptosis of photoreceptor cells, Res. Commun. Mol. Pathol. Pharmacol., 92, 177–189.

    PubMed  CAS  Google Scholar 

  26. Lin, Y., Jones, B. W., Liu, A., Vazquez-Chona, F. R., Lauritzen, J. S., Ferrell, W. D., and Marc, R. E. (2012) Rapid glutamate receptor 2 trafficking during retinal degeneration, Mol. Neurodegener., 7, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kuwabara, T., and Gorn, R. A. (1968) Retinal damage by visible light. An electron microscopic study, Arch. Ophthalmol., 79, 69–78.

    Article  PubMed  CAS  Google Scholar 

  28. Schmidt, R. E., and Zuclich, J. A. (1980) Retinal lesions due to ultraviolet laser exposure, Invest. Ophthalmol. Vis. Sci., 19, 1166–1175.

    PubMed  CAS  Google Scholar 

  29. De Vera Mudry, M. C., Kronenberg, S., Komatsu, S., and Aguirre, G. D. (2013) Blinded by the light: retinal phototoxicity in the context of safety studies, Toxicol. Pathol., 41, 813–825.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hafezi, F., Marti, A., Munz, K., and Reme, C. E. (1997) Light-induced apoptosis: differential timing in the retina and pigment epithelium, Exp. Eye Res., 64, 963–970.

    Article  PubMed  CAS  Google Scholar 

  31. Wenzel, A., Grimm, C., Samardzija, M., and Reme, C. E. (2005) Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration, Prog. Retin. Eye Res., 24, 275–306.

    Article  PubMed  CAS  Google Scholar 

  32. Costa, B. L., Fawcett, R., Li, G.-Y., Safa, R., and Osborne, N. N. (2008) Orally administered epigallocatechin gallate attenuates light-induced photoreceptor damage, Brain Res. Bull., 76, 412–423.

    Article  PubMed  Google Scholar 

  33. Mandal, M. N. A., Patlolla, J. M. R., Zheng, L., Agbaga, M.-P., Tran, J.-T. A., Wicker, L., Kasus-Jacobi, A., Elliott, M. H., Rao, C. V., and Anderson, R. E. (2009) Curcumin protects retinal cells from light- and oxidant stress-induced cell death, Free Radic. Biol. Med., 46, 672–679.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Tanito, M., Li, F., Elliott, M. H., Dittmar, M., and Anderson, R. E. (2007) Protective effect of TEMPOL derivatives against light-induced retinal damage in rats, Invest. Ophthalmol. Vis. Sci., 48, 1900–1905.

    Article  PubMed  Google Scholar 

  35. Lewis, G. P., Guerin, C. J., Anderson, D. H., Matsumoto, B., and Fisher, S. K. (1994) Rapid changes in the expression of glial cell proteins caused by experimental retinal detachment, Am. J. Ophthalmol., 118, 368–376.

    Article  PubMed  CAS  Google Scholar 

  36. Fisher, S. K., Erickson, P. A., Lewis, G. P., and Anderson, D. H. (1991) Intraretinal proliferation induced by retinal detachment, Invest. Ophthalmol. Vis. Sci., 32, 1739–1748.

    PubMed  CAS  Google Scholar 

  37. Bringmann, A., Pannicke, T., Grosche, J., Francke, M., Wiedemann, P., Skatchkov, S. N., Osborne, N. N., and Reichenbach, A. (2006) Muller cells in the healthy and diseased retina, Prog. Retin. Eye Res., 25, 397–424.

    Article  PubMed  CAS  Google Scholar 

  38. Jadhav, A. P., Roesch, K., and Cepko, C. L. (2009) Development and neurogenic potential of Muller glial cells in the vertebrate retina, Prog. Retin. Eye Res., 28, 249–262.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Cachafeiro, M., Bemelmans, A. P., Samardzija, M., Afanasieva, T., Pournaras, J. A., Grimm, C., Kostic, C., Philippe, S., Wenzel, A., and Arsenijevic, Y. (2013) Hyperactivation of retina by light in mice leads to photoreceptor cell death mediated by VEGF and retinal pigment epithelium permeability, Cell Death Dis., 4, e781.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Greenwood, J. (1992) The blood-retinal barrier in experimental autoimmune uveoretinitis (EAU): a review, Curr. Eye Res, 11(Suppl.), 25–32.

    Article  PubMed  Google Scholar 

  41. Perche, O., Doly, M., and Ranchon-Cole, I. (2007) Caspase-dependent apoptosis in light-induced retinal degeneration, Invest. Ophthalmol. Vis. Sci., 48, 2753–2759.

    Article  PubMed  Google Scholar 

  42. Antonenko, Y. N., Roginsky, V. A., Pashkovskaya, A. A., Rokitskaya, T. I., Kotova, E. A., Zaspa, A. A., Chernyak, B. V., and Skulachev, V. P. (2008) Protective effects of mitochondria-targeted antioxidant SkQ in aqueous and lipid membrane environments, J. Membr. Biol., 222, 141–149.

    Article  PubMed  CAS  Google Scholar 

  43. Chernyak, B. V., Izyumov, D. S., Lyamzaev, K. G., Pashkovskaya, A. A., Pletjushkina, O. Y., Antonenko, Y. N., Sakharov, D. V., Wirtz, K. W. A., and Skulachev, V. P. (2006) Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress, Biochim. Biophys. Acta, 1757, 525–534.

    Article  PubMed  CAS  Google Scholar 

  44. Gordon, W. C., Casey, D. M., Lukiw, W. J., and Bazan, N. G. (2002) DNA damage and repair in light-induced photoreceptor degeneration, Invest. Ophthalmol. Vis. Sci., 43, 3511–3521.

    PubMed  Google Scholar 

  45. Xia, X., Li, Y., Huang, D., Wang, Z., Luo, L., Song, Y., Zhao, L., and Wen, R. (2011) Oncostatin M protects rod and cone photoreceptors and promotes regeneration of cone outer segment in a rat model of retinal degeneration, PLoS One, 6, e18282.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Wen, R., Tao, W., Luo, L., Huang, D., Kauper, K., Stabila, P., LaVail, M. M., Laties, A. M., and Li, Y. (2012) Regeneration of cone outer segments induced by CNTF, Adv. Exp. Med. Biol., 723, 93–99.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Youssef, P. N., Sheibani, N., and Albert, D. M. (2011) Retinal light toxicity, Eye, 25, 1–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Forooghian, F., Stetson, P. F., Gross, N. E., and Meyerle, C. B. (2010) Quantitative assessment of photoreceptor recovery in atypical multiple evanescent white dot syndrome, Ophthalm. Surg. Lasers Imag., 41(Suppl.), 77–80.

    Article  Google Scholar 

  49. Tanito, M., Kaidzu, S., Ohira, A., and Anderson, R. E. (2008) Topography of retinal damage in light-exposed albino rats, Exp. Eye Res., 87, 292–295.

    Article  PubMed  CAS  Google Scholar 

  50. Organisciak, D. T., Darrow, R. M., Rapp, C. M., Smuts, J. P., Armstrong, D. W., and Lang, J. C. (2013) Prevention of retinal light damage by zinc oxide combined with rosemary extract, Mol. Vis., 19, 1433–1445.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Ojino, K., Shimazawa, M., Ohno, Y., Otsuka, T., Tsuruma, K., and Hara, H. (2014) Protective effect of SUN N8075, a free radical scavenger, against excessive light-induced retinal damage in mice, Biol. Pharm. Bull., 37, 424–430.

    Article  PubMed  CAS  Google Scholar 

  52. Arnault, E., Barrau, C., Nanteau, C., Gondouin, P., Bigot, K., Vienot, F., Gutman, E., Fontaine, V., Villette, T., Cohen-Tannoudji, D., Sahel, J.-A., and Picaud, S. (2013) Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions, PLoS One, 8, e71398.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Kernt, M., Thiele, S., Neubauer, A. S., Koenig, S., Hirneiss, C., Haritoglou, C., Ulbig, M. W., and Kampik, A. (2012) Inhibitory activity of ranibizumab, sorafenib, and pazopanib on light-induced overexpression of plateletderived growth factor and vascular endothelial growth factor A and the vascular endothelial growth factor A receptors 1 and 2 and neuropilin 1 and 2, Retina, 32, 1652–1663.

    Article  PubMed  CAS  Google Scholar 

  54. Saprunova, V. B., Pilipenko, D. I., Alexeevsky, A. V., Fursova, A. Z., Kolosova, N. G., and Bakeeva, L. E. (2010) Lipofuscin granule dynamics during development of agerelated macular degeneration, Biochemistry (Moscow), 75, 130–138.

    Article  CAS  Google Scholar 

  55. Markovets, A. M., Fursova, A. Z., and Kolosova, N. G. (2011) Therapeutic action of the mitochondria-targeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression, PLoS One, 6, e21682.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. S. Gancharova or E. N. Grigoryan.

Additional information

Original Russian Text © Yu. P. Novikova, O. S. Gancharova, O. V. Eichler, P. P. Philippov, E. N. Grigoryan, 2014, published in Biokhimiya, 2014, Vol. 79, No. 10, pp. 1355–1366.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikova, Y.P., Gancharova, O.S., Eichler, O.V. et al. Preventive and therapeutic effects of SkQ1-containing Visomitin eye drops against light-induced retinal degeneration. Biochemistry Moscow 79, 1101–1110 (2014). https://doi.org/10.1134/S0006297914100113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914100113

Key words

Navigation