1887

Abstract

infection (CDI) is a toxin-mediated intestinal disease. Toxin A, toxin B and binary toxin are believed to be responsible for the pathogenesis of CDI, which is characterized by massive infiltration of neutrophils at the infected intestinal mucosa. IL-17 is one of the cytokines that play critical roles in several inflammatory and immunological diseases through various actions, including promoting neutrophil recruitment. The aim of this study was to examine the role of this cytokine in CDI by employing IL-17 A and F double knockout (IL-17 KO) mice for the CDI model. We demonstrated that IL-17 KO mice were more resistant to CDI than WT mice using several factors, such as diarrhoea score, weight change and survival rate. Although the bacterial numbers of in faeces were not different, the inflammatory mediator levels at the large intestine on day 3 post-infection were attenuated in IL-17 KO mice. Finally, we showed that infiltration of neutrophils, but not macrophages, in the large intestine was significantly decreased in IL-17 KO mice compared to WT mice. In conclusion, the data demonstrate that endogenous IL-17 may be a factor determining the severity of CDI in mice. Although the mechanism is totally unknown, IL-17-mediated inflammatory responses, such as cytokine/chemokine production and neutrophil accumulation, may be plausible targets for future investigations.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000273
2016-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/8/821.html?itemId=/content/journal/jmm/10.1099/jmm.0.000273&mimeType=html&fmt=ahah

References

  1. Aspinall S. T., Hutchinson D. N. 1992; New selective medium for isolating Clostridium difficile from faeces. J Clin Pathol 45:812–814 [View Article][PubMed]
    [Google Scholar]
  2. Buonomo E. L., Madan R., Pramoonjago P., Li L., Okusa M. D., Petri W. A., Jr. 2013; Role of interleukin 23 signaling in Clostridium difficile colitis. J Infect Dis 208:917–920 [View Article][PubMed]
    [Google Scholar]
  3. Chen X., Katchar K., Goldsmith J. D., Nanthakumar N., Cheknis A., Gerding D. N., Kelly C. P. 2008; A mouse model of Clostridium difficile-associated disease. Gastroenterology 135:1984–1992 [View Article][PubMed]
    [Google Scholar]
  4. Fang A., Gerson D. F., Demain A. L. 2009; Production of Clostridium difficile toxin in a medium totally free of both animal and dairy proteins or digests. Proc Natl Acad Sci U S A 106:13225–13229 [View Article]
    [Google Scholar]
  5. Fujitani S., George W. L., Murthy A. R. 2011; Comparison of clinical severity score indices for Clostridium difficile infection. Infect Control Hosp Epidemiol 32:220–228 [View Article][PubMed]
    [Google Scholar]
  6. Happel K. I., Dubin P. J., Zheng M., Ghilardi N., Lockhart C., Quinton L. J., Odden A. R., Shellito J. E., Bagby G. J. et al. 2005; Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae . J Exp Med 202:761–769 [View Article][PubMed]
    [Google Scholar]
  7. Hasegawa M., Yamazaki T., Kamada N., Tawaratsumida K., Kim Y. G., Núñez G., Inohara N. 2011; Nucleotide-binding oligomerization domain 1 mediates recognition of Clostridium difficile and induces neutrophil recruitment and protection against the pathogen. J Immunol 186:4872–4880 [View Article][PubMed]
    [Google Scholar]
  8. Hirota S. A., Iablokov V., Tulk S. E., Schenck L. P., Becker H., Nguyen J., Al Bashir S., Dingle T. C., Laing A. et al. 2012; Intrarectal instillation of Clostridium difficile toxin A triggers colonic inflammation and tissue damage: development of a novel and efficient mouse model of Clostridium difficile toxin exposure. Infect Immun 80:4474–4484 [View Article][PubMed]
    [Google Scholar]
  9. Huang W., Na L., Fidel P. L., Schwarzenberger P. 2004; Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 190:624–631 [View Article][PubMed]
    [Google Scholar]
  10. Inui M., Ishida Y., Kimura A., Kuninaka Y., Mukaida N., Kondo T. 2011; Protective roles of CX3CR1-mediated signals in toxin A-induced enteritis through the induction of heme oxygenase-1 expression. J Immunol 186:423–431 [View Article][PubMed]
    [Google Scholar]
  11. Ishigame H., Kakuta S., Nagai T., Kadoki M., Nambu A., Komiyama Y., Fujikado N., Tanahashi Y., Akitsu A. et al. 2009; Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30:108–119 [View Article][PubMed]
    [Google Scholar]
  12. Issa M., Vijayapal A., Graham M. B., Beaulieu D. B., Otterson M. F., Lundeen S., Skaros S., Weber L. R., Komorowski R. A. et al. 2007; Impact of Clostridium difficile on inflammatory bowel disease. Clin Gastroenterol Hepatol 5:345–351 [View Article][PubMed]
    [Google Scholar]
  13. Jarchum I., Liu M., Shi C., Equinda M., Pamer E. G. 2012; Critical role for MyD88-mediated neutrophil recruitment during Clostridium difficile colitis. Infect Immun 80:2989–2996 [View Article][PubMed]
    [Google Scholar]
  14. Jovanovic D. V., Di Battista J. A., Martel-Pelletier J., Jolicoeur F. C., He Y., Zhang M., Mineau F., Pelletier J. P. 1998; IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol 160:3513–3521[PubMed]
    [Google Scholar]
  15. Kelly C. P., Becker S., Linevsky J. K., Joshi M. A., O'Keane J. C., Dickey B. F., LaMont J. T., Pothoulakis C. 1994; Neutrophil recruitment in Clostridium difficile toxin A enteritis in the rabbit. J Clin Invest 93:1257–1265 [CrossRef]
    [Google Scholar]
  16. Lochner M., Peduto L., Cherrier M., Sawa S., Langa F., Varona R., Riethmacher D., Si-Tahar M., Di Santo J. P., Eberl G. 2008; In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t+ T cells. J Exp Med 205:1381–1393 [View Article][PubMed]
    [Google Scholar]
  17. McDermott A. J., Falkowski N. R., McDonald R. A., Pandit C. R., Young V. B., Huffnagle G. B. 2016; Interleukin-23 (IL-23), independent of IL-17 and IL-22, drives neutrophil recruitment and innate inflammation during Clostridium difficile colitis in mice. Immunology 147:114–124 [View Article][PubMed]
    [Google Scholar]
  18. McDonald D. R. 2012; TH17 deficiency in human disease. J Allergy Clin Immunol 129:1429–1435 [View Article][PubMed]
    [Google Scholar]
  19. Miller B. A., Chen L. F., Sexton D. J., Anderson D. J. 2011; Comparison of the burdens of hospital-onset, healthcare facility-associated Clostridium difficile infection and of healthcare-associated infection due to methicillin-resistant Staphylococcus aureus in community hospitals. Infect Control Hosp Epidemiol 32:387–390 [View Article][PubMed]
    [Google Scholar]
  20. Nakae S., Komiyama Y., Nambu A., Sudo K., Iwase M., Homma I., Sekikawa K., Asano M., Iwakura Y. 2002; Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17:375–387 [View Article][PubMed]
    [Google Scholar]
  21. O'Connor J. R., Johnson S., Gerding D. N. 2009; Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology 136:1913–1924 [View Article][PubMed]
    [Google Scholar]
  22. Pappu R., Ramirez-Carrozzi V., Ota N., Ouyang W., Hu Y. 2010; The IL-17 family cytokines in immunity and disease. J Clin Immunol 30:185–195 [View Article][PubMed]
    [Google Scholar]
  23. Qiu B., Pothoulakis C., Castagliuolo I., Nikulasson S., LaMont J. T. 1999; Participation of reactive oxygen metabolites in Clostridium difficile toxin A-induced enteritis in rats. Am J Physiol 276:G485–G490[PubMed]
    [Google Scholar]
  24. Sorg J. A., Dineen S. S. 2009; Laboratory maintenance of Clostridium difficile. Curr Protoc Microbiol Chapter 9:1 [View Article][PubMed]
    [Google Scholar]
  25. Sun X., Wang H., Zhang Y., Chen K., Davis B., Feng H. 2011; Mouse relapse model of Clostridium difficile infection. Infect Immun 79:2856–2864 [View Article][PubMed]
    [Google Scholar]
  26. Takahashi N., Vanlaere I., de Rycke R., Cauwels A., Joosten L. A., Lubberts E., van den Berg W. B., Libert C. 2008; IL-17 produced by Paneth cells drives TNF-induced shock. J Exp Med 205:1755–1761 [View Article][PubMed]
    [Google Scholar]
  27. Zelante T., De Luca A., Bonifazi P., Montagnoli C., Bozza S., Moretti S., Belladonna M. L., Vacca C., Conte C. et al. 2007; IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 37:2695–2706 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000273
Loading
/content/journal/jmm/10.1099/jmm.0.000273
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error