Int J Sports Med 2000; 21(2): 83-89
DOI: 10.1055/s-2000-8874
Physiology and Biochemistry
Georg Thieme Verlag Stuttgart ·New York

Nitric Oxide Biomarkers Increase During Exercise-Induced Vasodilation in the Forearm

 M. D. Brown1, 5 ,  M. Srinivasan1 ,  R. V. Hogikyan1, 4 ,  D. R. Dengel1, 4 ,  S. G. Glickman3 ,  A. Galecki2, 4 ,  M. A. Supiano1, 2, 4
  • 1 Department of Internal Medicine, Division of Geriatric Medicine
  • 2 Institute of Gerontology
  • 3 Division of Kinesiology, University of Michigan
  • 4 GRECC, Ann Arbor Veterans Affairs Medical Center, Ann Arbor, Michigan
  • 5 Department of Kinesiology, University of Maryland, College Park, Maryland, USA
Further Information

Publication History

Publication Date:
31 December 2000 (online)

The purpose of the study was to determine if exercise-induced vasodilation was associated with an increase in forearm plasma levels of nitric oxide (NO) biomarkers (NO2 - + NO3 - and L-citrulline). Twelve healthy subjects (27 ± 6 yrs) performed incremental rhythmic forearm exercise with the nondominant hand for 6 min each at 15, 30 and 45 % of maximal voluntary contraction (MVC). Forearm blood flow (FBF) was determined in the exercise arm using venous occlusion plethysmography. Blood samples were obtained from the antecubital vein of the exercise and nonexercise arms for the measurement of NO biomarkers. In the exercise arm, FBF increased by a mean of 150 %, 335 % and 585 % above baseline at 15, 30 and 45 % of MVC, respectively. (ANOVA, P = 0.0001). Venous plasma NO2 - + NO3 - levels increased from 24 ± 4 µmol/L at baseline, to 29 ± 5, 32 ± 4 and 35 ± 4 µmol/L (ANOVA, P = 0.0001). Venous plasma L-citrulline levels increased from 31 ± 5 µmol/L at baseline to 58 ± 10, 87 ± 7 and 141 ±15 µmol/L (ANOVA, P = 0.0001). There was a linear relationship between FBF and venous plasma NO2 - + NO3 - (slope =0.38 ± 0.10, P = 0.0007) and between L-citrulline, (slope =5.1 ± 1.3, P = 0.0004). Venous plasma levels of NO2 - + NO3 - and L-citrulline in the nonexercise arm were unchanged. These results demonstrate that exercise-induced vasodilation in the forearm is associated with forearm plasma levels of NO2 - + NO3 - and L-citrulline, in vivo markers of NO production.

References

  • 1 Akiyama K, Suzuki H, Bing R J. Oxidation products of nitric oxide, NO2 and NO3, in plasma after experimental myocardial infarction.  J Mol Cell Cardiol. 1997;  29 1-9
  • 2 Avogaro A, Piarulli F, Valero P, Miola M, Calveri M, Pavan P, Vicini P, Cobelli C, Tiengo A, Calo L, Del Prato S. Forearm nitric oxide balance, vascular relaxation, and glucose metabolism in NIDDM patients.  Diabetes. 1997;  46 1040-1046
  • 3 Balon T W, Nadler J L. Nitric oxide release is present from incubated skeletal muscle preparations.  J Appl Physiol. 1994;  77 2519-2521
  • 4 Bernstein R D, Ochoa F Y, Xu X, Forfia P, Shen W, Thompson C I, Hintz T H. Function and production of nitric oxide in the coronary circulation of the conscious dog during exercise.  Circ Res. 1996;  79 840-848
  • 5 Bode-Boger S M, Boger R H, Creutzig A, Tsikas D, Gutzki F M, Alexander K, Frolich J C. L-Arginine infusion decreases peripheral arterial resistance and inhibits platelet aggregation in healthy subjects.  Clin Sci. 1994;  87 303-310
  • 6 Bode-Boger S M, Boger R H, Schroder E P, Frohlich J C. Exercise increases systemic nitric oxide production in men.  J Cardiovasc Risk. 1994;  1 173-178
  • 7 Buga G M, Gold M E, Fukuto J M, Ignarro L J. Shear stress-induced release of nitric oxide from endothelial cells grown on beads.  Hypertension. 1991;  17 187-193
  • 8 Castillo L, Chapman T E, Sanchez M, Yu Y, Burke J F, Ajami A M, Vogt J, Young V R. Plasma arginine and citrulline kinetics in adults given adequate and arginine-free diets.  Proc Natl Acad Sci USA. 1993;  90 7749-7753
  • 9 Castillo L, Sanchez M, Vogt J, Chapman T, DeRojas-Walker D C, Tannenbaum S R, Ajami A, Young V R. Plasma arginine, citrulline, and ornithine kinetics in adults, with observations on nitric oxide synthesis.  Am J Physiol. 1995;  268 370
  • 10 Duncker D J, Van Zon N S, Altman J D, Oavek T J, Bache R J. Role of K+ ATP channels in coronary vasodilation during exercise.  Circulation. 1993;  88 1245-1253
  • 11 Dyke C K, Proctor D N, Dietz N M, Joyner M J. Role of nitric oxide in exercise hyperaemia during prolonged rhythmic handgripping in humans.  J Appl Physiol. 1995;  488 259-265
  • 12 Fryburg D A. N G-Monomethy-L-arginine inhibits the blood flow but not the insulin-like response of forearm muscle to IGF-I.  J Clin Invest. 1996;  97 1319-1328
  • 13 Gilligan D, Panza J A, Kilcoyne C M, Waclawiw M A, Casino P R, Quyyumi A A. Contribution of endothelium-derived nitric oxide to exercise-induced vasodilation.  Circulation. 1994;  90 2853-2858
  • 14 Gonnewardene I P, Karim F. Attenuation of exercise vasodilatation by adenosine deaminase in anesthetized dogs.  J Physiol. 1991;  442 65-79
  • 15 Hevel J, Marletta M A. Nitric-oxide synthase assays.  Methods in Enzymol. 1994;  233 250-258
  • 16 Hibbs J B, Taintor R R, Vavrin Z. Macrophage cytotoxicity: role for L-arginine deaminase activity and imino nitrogen oxidation to nitrite.  Science. 1987;  235 473-476
  • 17 Hickner R C, Fisher J S, Ehsani A A, Kohrt W M. Role of nitric oxide in skeletal muscle blood flow at rest and during dynamic exercise in humans.  Am J Physiol. 1997;  273 410
  • 18 Hishikawa K, Toshio N, Suzuki H, Kato R, Saruta T. Role of L-arginine-nitric oxide pathway in hypertension.  J Hypertension. 1993;  11 639-645
  • 19 Hogikyan R V, Supiano M A. Homologous upregulation of human arterial α-adrenergic responses by guanadrel.  J Clin Invest. 1993;  91 1429-1435
  • 20 Honig C R, Frierson J L. Role of adenosine in exercise vasodilation in dog gracilis muscle.  Am J Physiol. 1980;  238 715
  • 21 Ignarro L J, Fukuto J M, Griscavage J M, Rogers N E, Byrns R E. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine.  Proc Natl Acad Sci. 1993;  90 8103-8107
  • 22 Jia L, Bonaventura J, Stamler J S. S-nitrosohaemoglobin: A dynamic activity of blood involved in vascular control.  Nature. 1996;  380 221-226
  • 23 Jungersten L, Ambring A, Wall B, Wennmalm A. Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans.  Appl J Physiol. 1997;  82 760-764
  • 24 Kilbom A, Wennmalm A. Endogenous prostaglandins as local regulators of blood flow in man: effect of indomethacin on reactive and functional hyperemia.  J Physiol. 1976;  257 109-121
  • 25 Kingwell B A, Sherrard B, Jennings G L, Dart A M. Four weeks of cycle training increases basal production of nitric oxide from the forearm.  Am J Physiol. 1997;  272 1077
  • 26 Kobzik L, Reid M B, Bredt D S, Stamler J S. Nitric oxide in skeletal muscle.  Nature. 1994;  372 546-548
  • 27 Kumagai K, Suzuki H, Ichikawa M, Jimbo M, Murakami M. Nitric oxide increases renal blood flow by interacting with the sympathetic nervous system.  Hypertension. 1994;  24 220-226
  • 28 Linder L, Kiowski W, Buhler F R, Luscher T F. Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo.  Circulation. 1990;  81 1762-1767
  • 29 Lindstrom M J, Bates D M. Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data.  J Am Statistical Assoc. 1998;  83 1014-1022
  • 30 Marletta M, Yoon P S, Lynegar R, Leaf C D, Wishnok J S. Macrophage oxidation of L-arginine to nitrate and nitrite: nitric oxide is an intermediate.  Biochemistry. 1988;  27 8706-8711
  • 31 McMahon T J, Hood J S, Kadowitz P J. Pulmonary vasodilator response to vagal stimulation is blocked by Nω-nitro-L-arginine methyl ester in the cat.  Circ Res. 1992;  70 364-369
  • 32 Miller V M, Vanhoutte P M. Enhanced release of endothelium-derived factor(s) by chronic increases in blood flow.  Am J Physiol. 1988;  255 451
  • 33 Node K, Kitakaz M, Sato H, Koretsune Y, Katsube Y, Karita M, Kosaka H, Hiroaki K, Masatsugu H. Effect of acute dynamic exercise on circulating plasma nitric oxide level and correlation to norephinephrine release in normal subjects.  Am J Cardiol. 1997;  79 526-528
  • 34 Palmer R MJ, Moncada S. A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells.  Biochem Biophys Res Commun. 1989;  158 348-352
  • 35 Poveda J J, Riestra A, Salas E, Cagigas M L, Lopez-Somoza C, Amado J A, Berrazueta J R. Contribution of nitric oxide to exercise-induced changes in healthy volunteers: effects of acute exercise and long-term physical training.  Eur J Clin Invest. 1997;  27 967-971
  • 36 Rubanyi G, Romero C, Vanhoutte P M. Flow-induced release of endothelium-derived relaxing factor.  Am J Physiol. 1986;  250 1149
  • 37 Shoemaker J K, Naylor H L, Pozeg Z I, Hughson R L. Failure of prostaglandins to modulate the time course of blood flow during dynamic forearm exercise in humans.  J Appl Physiol. 1996;  81 1516-1521
  • 38 Shoemaker J K, Halliwill J R, Hughson R L, Joyner M J. Contribution of acetylcholine and nitric oxide to forearm blood flow at exercise onset and recovery.  Am J Physiol. 1997;  273 2395
  • 39 Shultz P J, Tolins J P. Adaptation to increased dietary salt intake in the rat.  J Clin Invest. 1993;  91 642-650
  • 40 Smulders R A, Stehouwer C DA, Olthof C G, van Kamp G I, Teerlink T, De Vries M JM, Donker A JM. Plasma endothelin levels and vascular effects of intravenous L-arginine infusion in subjects with uncomplicated insulin-dependent diabetes mellitus.  Clin Sci. 1994;  87 37-43
  • 41 Tsikas D, Gutzki F M, Rossa S, Bauer H, Neumann C, Dockendorff K, Sandman J, Frolich J C. Measurement of nitrite and nitrate in biological fluids by gas chromatography-mass spectrometry and by the Griess assay: problems with the griess assay-solutions by gas chromatography-mass spectrometry.  Anal Biochem. 1997;  244 208-220
  • 42 Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man.  Lancet. 1989;  2 997-1000
  • 43 Wilson J, Kapoor S. Contribution of endothelium-derived relaxing factor to exercise-induced vasodilation in humans.  J Appl Physiol. 1993;  75 2740-2744
  • 44 Worthen H G, Liu H. Automatic pre-column derivitization and reversed-phase high performance liquid chromatography of primary and secondary amino acids in plasma with photo-diode array and fluorescence detection.  J Liquid Chromatography. 1992;  15 3323-3341

Ph.D. Michael D. Brown

Department of Kinesiology University of Maryland

College Park

Maryland

USA

Phone: + 1 (301) 4052483

Fax: + 1 (301) 3149167

Email: mb166@umail.umd.edu

    >