Z Orthop Unfall 2012; 150(3): 280-289
DOI: 10.1055/s-0031-1298387
Knie
Georg Thieme Verlag KG Stuttgart · New York

Evidenzbasierte Knorpeltherapie im Kniegelenk – regenerative Behandlungsoptionen

Evidence-Based Therapy for Cartilage Lesions in the Knee – Regenerative Treatment Options
B. Proffen
1   Department of Orthopedic Surgery, Childrenʼs Hospital Boston, Massachusetts, United States
,
A. von Keudell
2   Cartilage Repair Center, Brigham and Womenʼs Hospital, Boston, Massachusetts, United States
,
P. Vavken
1   Department of Orthopedic Surgery, Childrenʼs Hospital Boston, Massachusetts, United States
3   Orthopädische Universitätsklinik, Universitätsspital Basel, Schweiz
› Author Affiliations
Further Information

Publication History

Publication Date:
21 June 2012 (online)

Zusammenfassung

Hintergrund: In den vergangenen Jahren konnte ein Wandel in der Behandlung von Knorpeldefekten, weg vom Ersatz, hin zu regenerativen Ansätzen, beobachtet werden. Zwei sehr populäre regenerative Ansätze sind zum einen die autologe Chondrozytenimplantation (ACI) und zum anderen die Mikrofrakturierung. Material und Methoden: Das Ziel dieser Übersichtsarbeit ist es, diese beiden Methoden zu beschreiben, zu vergleichen und einen evidenzbasierten Algorithmus für die Behandlung fokaler Knorpeldefekte zu präsentieren. Ergebnisse: Beide Behandlungsweisen bewiesen ihre Effektivität in Langzeitstudien, in denen die Mikrofrakturierung bei bis zu 95 % der Patienten und die ACI in den Nachuntersuchungen nach 5 bzw. 2–9 Jahren bei 92 % der Patienten eine Verbesserung bewirkte. Zu den Faktoren, die den Behandlungserfolg entscheidend beeinflussen, gehören unter anderem die Defektlokalisation, Begleiterkrankungen und das Alter der Patienten. Zu den Komplikationen bei der Mikrofrakturierung zählen die minderwertige Gewebedifferenzierung und die Osteophytenbildung in der Behandlungszone, bei der ACI die Gewebehypertrophie und der notwendige zweizeitige Eingriff. In vergleichenden Studien ergibt sich klinisch ein weitgehend ähnliches Bild, jedoch scheint die ACI histologisch etwas bessere Ergebnisse zu ergeben, was höchstwahrscheinlich zu besseren Langzeitergebnissen führt. Schlussfolgerung: Zwar besteht noch kein allgemeines Konzept für die Herangehensweise an Knorpelschäden im Kniegelenk, doch empfiehlt sich aufgrund der aktuellen Studienergebnisse eine auf der Defektgröβe basierende Therapiewahl.

Abstract

Background: The treatment of cartilage defects has seen a shift from replacement to regeneration in the last few years. The rationale behind this development is the improvement in the quality-of-care for the growing segment of young patients who are prone to arthroplasty complications because of their specific characteristics – young age, high level of activity, high demand for functionality. These days, two of the most popular regenerative treatments are microfracture and autologous chondrocyte implantation (ACI). Although these new options show promising results, no final algorithm for the treatment of cartilage lesions has been established as yet. Materials and Methods: The objective of this review is to describe and compare these two treatment options and to present an evidence-based treatment algorithm for focal cartilage defects. Results: Microfracture is a cost-effective, arthroscopic one-stage procedure, in which by drilling of the subchondral plate, mesenchymal stem cells from the bone marrow migrate into the defect and rebuild the cartilage. ACI is a two-stage procedure in which first chondrocytes are harvested, expanded in cell culture and in a second open procedure reimplanted into the cartilage defect. Microfracture is usually used for focal cartilage defects < 4 cm2, the treated defect size of the ACI seems to have a wider range. The effectiveness of these two treatments has been shown in long-term longitudinal studies, where microfracture showed improvement in up to 95 % of patients, whereas 92 % of the patients in a 2–9 year period of follow-up after ACI showed improvements, respectively. The successful outcome of the treatment depends on multiple factors such as the location of the defect, cell differentiation and proliferation, concomitant problems, and the age of the patient. Associated complications and disadvantages of the two different applications are, for the microfracture patient, a poor tissue differentation or a formation of an intra-lesional osteophyte, and for the ACI patient, periosteal hypertrophy and the need for two procedures in ACI. Only a few studies provide detailed and evidence-based information on a comparative assessment. These studies, however, are showing widely similar clinical outcomes but better histological results for ACI, which are likely to translate into better long-term outcomes. Conclusions: Although evidence-based studies comparing microfracture and ACI have not found significant differences in the clinical outcome, the literature does show that choosing the treatment based on the size and characteristics of the osteochondral lesion might be beneficial. The American Association of Orthopedic Surgeons suggest that contained lesions < 4 cm2 should be treated by microfracture, lesions bigger than that by ACI.

 
  • Literatur

  • 1 Curl WW, Krome J, Gordon ES et al. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 1997; 13: 456-460
  • 2 Hjelle K, Solheim E, Strand T et al. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 2002; 18: 730-734
  • 3 Gerber AC, Hochberg MC, Mead LA. Joint injury in young adults and risk of subsequent knee and hip osteoarthritis. Ann Int Med 2000; 133: 321-328
  • 4 Hunter W. On the structure and diseases of articulating cartilage. Philos Trans R Soc Lond 1743; 42b: 514-521
  • 5 Blevins FT, Steadman JR, Rodrigo JJ et al. Treatment of articular cartilage defects in athletes: an analysis of functional outcome and lesion appearance. Orthopedics 1998; 21: 761-767
  • 6 Pridie K. A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg [Br] 1959; 41: 618-619
  • 7 Johnson LL. Arthroscopic abrasion arthroplasty: a review. Clin Orthop Relat Res 2001; 391 (Suppl.) S306-S317
  • 8 Moseley jr JB, Wray NP, Kuykendall D et al. Arthroscopic treatment of osteoarthritis of the knee: a prospective, randomized, placebo-controlled trial. Results of a pilot study. Am J Sports Med 1996; 24: 28-34
  • 9 Steadman JR, Rodkey WG, Briggs KK et al. [The microfracture technic in the management of complete cartilage defects in the knee joint]. Orthopade 1999; 28: 26-32
  • 10 Frisbie DD, Trotter GW, Powers BE et al. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg 1999; 28: 242-255
  • 11 Frisbie DD, Morisset S, Ho CP et al. Effects of calcified cartilage on healing of chondral defects treated with microfracture in horses. Am J Sports Med 2006; 34: 1824-1831
  • 12 Steadman JR, Rodkey WG, Briggs KK. Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J Knee Surg 2002; 15: 170-176
  • 13 Steadman JR, Ramappa AJ, Maxwell RB et al. An arthroscopic treatment regimen for osteoarthritis of the knee. Arthroscopy 2007; 23: 948-955
  • 14 Steadman JR, Miller BS, Karas SG et al. The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players. J Knee Surg 2003; 16: 83-86
  • 15 Steadman JR, Briggs KK, Rodrigo JJ et al. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 2003; 19: 477-484
  • 16 Iwasa J, Engebretsen L, Shima Y et al. Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc 2009; 17: 561-577
  • 17 Jones DG, Peterson L. Autologous chondrocyte implantation. J Bone Joint Surg [Am] 2006; 88: 2502-2520
  • 18 Gikas PD, Bayliss L, Bentley G et al. An overview of autologous chondrocyte implantation. J Bone Joint Surg [Br] 2009; 91: 997-1006
  • 19 Peterson L, Brittberg M, Kiviranta I et al. Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med 2002; 30: 2-12
  • 20 Peterson L, Vasiliadis HS, Brittberg M et al. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 2010; 38: 1117-1124
  • 21 Bentley G, Greer 3rd RB. Homotransplantation of isolated epiphyseal and articular cartilage chondrocytes into joint surfaces of rabbits. Nature 1971; 230: 385-388
  • 22 Brittberg M. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331: 889-895
  • 23 Saris DB, Vanlauwe J, Victor J et al. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med 2009; 37 (Suppl. 01) 10S-19S
  • 24 Ferruzzi A, Buda R, Faldini C et al. Autologous chondrocyte implantation in the knee joint: open compared with arthroscopic technique. Comparison at a minimum follow-up of five years. J Bone Joint Surg [Am] 2008; 90 (Suppl. 04) 90-101
  • 25 McNickle AG, Provencher MT, Cole BJ. Overview of existing cartilage repair technology. Sports Med Arthrosc 2008; 16: 196-201
  • 26 McCormick F, Yanke A, Provencher MT et al. Minced articular cartilage – basic science, surgical technique, and clinical application. Sports Med Arthrosc 2008; 16: 217-220
  • 27 Marcacci M, Kon E, Delcogliano M et al. Arthroscopic autologous osteochondral grafting for cartilage defects of the knee: prospective study results at a minimum 7-year follow-up. Am J Sports Med 2007; 35: 2014-2021
  • 28 Minas T, Gomoll AH, Rosenberger R et al. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med 2009; 37: 902-908
  • 29 Peterson L, Minas T, Brittberg M et al. Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg [Am] 2003; 85 (Suppl. 02) 17-24
  • 30 Krishnan SP, Skinner JA, Bartlett W et al. Who is the ideal candidate for autologous chondrocyte implantation?. J Bone Joint Surg [Br] 2006; 88: 61-64
  • 31 Saris DB, Vanlauwe J, Victor J et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 2008; 36: 235-246
  • 32 Nebelung S, Ladenburger A, Gavenis K et al. [Tissue engineering of cartilage replacement material – mechanical stimulation in the in-vitro cultivation of human chondrocytes]. Z Orthop Unfall 2011; 149: 52-60
  • 33 Vasara AI, Nieminen MT, Jurvelin JS et al. Indentation stiffness of repair tissue after autologous chondrocyte transplantation. Clin Orthop Relat Res 2005; 433: 233-242
  • 34 Brown WE, Potter HG, Marx RG et al. Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Relat Res 2004; 422: 214-223
  • 35 Kreuz PC, Steinwachs MR, Erggelet C et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage 2006; 14: 1119-1125
  • 36 Mithoefer K, Williams 3rd RJ, Warren RF et al. High-impact athletics after knee articular cartilage repair: a prospective evaluation of the microfracture technique. Am J Sports Med 2006; 34: 1413-1418
  • 37 Knutsen G, Engebretsen L, Ludvigsen TC et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg [Am] 2004; 86: 455-464
  • 38 Cerynik DL, Lewullis GE, Joves BC et al. Outcomes of microfracture in professional basketball players. Knee Surg Sports Traumatol Arthrosc 2009; 17: 1135-1139
  • 39 Gudas R, Stankevicius E, Monastyreckiene E et al. Osteochondral autologous transplantation versus microfracture for the treatment of articular cartilage defects in the knee joint in athletes. Knee Surg Sports Traumatol Arthrosc 2006; 14: 834-842
  • 40 Gobbi A, Nunag P, Malinowski K. Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes. Knee Surg Sports Traumatol Arthrosc 2005; 13: 213-221
  • 41 Von Keudell A, Atzwanger J, Forstner R et al. Radiological evaluation of cartilage after microfracture treatment: a long-term follow-up study. Eur J Radiol 2012; 81: 1618-1624
  • 42 Mithoefer K, Williams 3rd RJ, Warren RF et al. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg [Am] 2005; 87: 1911-1920
  • 43 Gudas R, Kalesinskas RJ, Kimtys V et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy 2005; 21: 1066-1075
  • 44 Knutsen G, Drogset JO, Engebretsen L et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg [Am] 2007; 89: 2105-2112
  • 45 Gomoll AH, Farr J, Gillogly SD et al. Surgical management of articular cartilage defects of the knee. J Bone Joint Surg [Am] 2010; 92: 2470-2490
  • 46 Gudas R, Simonaityte R, Cekanauskas E et al. A prospective, randomized clinical study of osteochondral autologous transplantation versus microfracture for the treatment of osteochondritis dissecans in the knee joint in children. J Pediatr Orthop 2009; 29: 741-748
  • 47 Miller BS, Joseph TA, Barry EM et al. Patient satisfaction after medial opening high tibial osteotomy and microfracture. J Knee Surg 2007; 20: 129-133
  • 48 Brittberg M, Lindahl A, Nilsson A et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331: 889-895
  • 49 Kon E, Gobbi A, Filardo G et al. Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. Am J Sports Med 2009; 37: 33-41
  • 50 Minas T. Autologous chondrocyte implantation for focal chondral defects of the knee. Clin Orthop Relat Res 2001; 394 (Suppl.) S349-S361
  • 51 Kreuz PC, Steinwachs M, Erggelet C et al. Importance of sports in cartilage regeneration after autologous chondrocyte implantation: a prospective study with a 3-year follow-up. Am J Sports Med 2007; 35: 1261-1268
  • 52 Maus U, Schneider U, Gravius S et al. [Clinical results after three years use of matrix-associated ACT for the treatment of osteochondral defects of the knee]. Z Orthop Unfall 2008; 146: 31-37
  • 53 McNickle AG, LʼHeureux DR, Yanke AB et al. Outcomes of autologous chondrocyte implantation in a diverse patient population. Am J Sports Med 2009; 37: 1344-1350
  • 54 Ebert JR, Robertson WB, Woodhouse J et al. Clinical and magnetic resonance imaging-based outcomes to 5 years after matrix-induced autologous chondrocyte implantation to address articular cartilage defects in the knee. Am J Sports Med 2011; 39: 753-763
  • 55 Basad E, Stürz H, Steinmeyer J. Die Behandlung chondraler Defekte mit MACI oder Microfracture – erste Ergebnisse einer vergleichenden klinischen Studie. Orthop Prax 2004; 40: 6-10
  • 56 Vavken P, Gruber M, Dorotka R. [Tissue engineering in orthopaedic surgery – clinical effectiveness and cost effectiveness of autologous chondrocyte transplantation]. Z Orthop Unfall 2008; 146: 26-30
  • 57 Dorotka R, Windberger U, Macfelda K et al. Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials 2005; 26: 3617-3629
  • 58 Breinan HA, Martin SD, Hsu HP et al. Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J Orthop Res 2000; 18: 781-789
  • 59 Nuernberger S, Cyran N, Albrecht C et al. The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts. Biomaterials 2011; 32: 1032-1040
  • 60 Marcacci M, Berruto M, Brocchetta D et al. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res 2005; 435: 96-105
  • 61 Kerker JT, Leo AJ, Sgaglione NA. Cartilage repair: synthetics and scaffolds: basic science, surgical techniques, and clinical outcomes. Sports Med Arthrosc 2008; 16: 208-216
  • 62 Zeifang F, Oberle D, Nierhoff C et al. Autologous chondrocyte implantation using the original periosteum-cover technique versus matrix-associated autologous chondrocyte implantation: a randomized clinical trial. Am J Sports Med 2010; 38: 924-933
  • 63 Visna P, Pasa L, Cizmar I et al. Treatment of deep cartilage defects of the knee using autologous chondrograft transplantation and by abrasive techniques – a randomized controlled study. Acta Chir Belg 2004; 104: 709-714
  • 64 Erggelet C, Kreuz PC, Mrosek EH et al. Autologous chondrocyte implantation versus ACI using 3D-bioresorbable graft for the treatment of large full-thickness cartilage lesions of the knee. Arch Orthop Trauma Surg 2010; 130: 957-964
  • 65 Gravius S, Schneider U, Mumme T et al. [Osteochondral marker proteins in the quantitative evaluation of matrix-based autologous chondrocyte transplantation CaRes]. Z Orthop Unfall 2007; 145: 625-632
  • 66 Berner A, Siebenlist S, Reichert JC et al. [Reconstruction of osteochondral defects with a stem cell-based cartilage-polymer construct in a small animal model]. Z Orthop Unfall 2010; 148: 31-38