Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prevalence and specificity of LKB1 genetic alterations in lung cancers

Abstract

Germline LKB1 mutations cause Peutz–Jeghers syndrome, a hereditary disorder that predisposes to gastrointestinal hamartomatous polyposis and several types of malignant tumors. Somatic LKB1 alterations are rare in sporadic cancers, however, a few reports showed the presence of somatic alterations in a considerable fraction of lung cancers. To determine the prevalence and the specificity of LKB1 alterations in lung cancers, we examined a large number of lung cancer cell lines and lung adenocarcinoma (AdC) specimens for the alterations. LKB1 genetic alterations were frequently detected in the cell lines (21/70, 30%), especially in non-small cell lung cancers (NSCLCs) (20/51, 39%), and were significantly more frequent in cell lines with KRAS mutations. Point mutations were detected only in AdCs and large cell carcinomas, whereas homozygous deletions were detected in all histological types of lung cancer. Among lung AdC specimens, LKB1 mutations were found in seven (8%) of 91 male smokers but in none of 64 females and/or nonsmokers, and were significantly more frequent in poorly differentiated tumors. The difference in the frequency of LKB1 alterations between cell lines and tumor specimens was likely to be owing to masking of deletions by the contamination of noncancerous cells in the tumor specimens. These results indicate that somatic LKB1 genetic alterations preferentially occur in a subset of poorly differentiated lung AdCs that appear to correlate with smoking males.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Alessi DR, Sakamoto K, Bayascas JR . (2006). Lkb1-dependent signaling pathways. Annu Rev Biochem 75: 137–163.

    Article  CAS  Google Scholar 

  • Avizienyte E, Loukola A, Roth S, Hemminki A, Tarkkanen M, Salovaara R et al. (1999). LKB1 somatic mutations in sporadic tumors. Am J Pathol 154: 677–681.

    Article  CAS  Google Scholar 

  • Baas AF, Smit L, Clevers H . (2004). LKB1 tumor suppressor protein: PARtaker in cell polarity. Trends Cell Biol 14: 312–319.

    Article  CAS  Google Scholar 

  • Bignell GR, Barfoot R, Seal S, Collins N, Warren W, Stratton MR . (1998). Low frequency of somatic mutations in the LKB1/Peutz–Jeghers syndrome gene in sporadic breast cancer. Cancer Res 58: 1384–1386.

    CAS  PubMed  Google Scholar 

  • Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B et al. (2001). Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93: 691–699.

    Article  CAS  Google Scholar 

  • Carretero J, Medina PP, Pio R, Montuenga LM, Sanchez-Cespedes M . (2004). Novel and natural knockout lung cancer cell lines for the LKB1/STK11 tumor suppressor gene. Oncogene 23: 4037–4040.

    Article  CAS  Google Scholar 

  • Fujita T, Kiyama M, Tomizawa Y, Kohno T, Yokota J . (1999). Comprehensive analysis of p53 gene mutation characteristics in lung carcinoma with special reference to histological subtypes. Int J Oncol 15: 927–934.

    CAS  PubMed  Google Scholar 

  • Ghaffar H, Sahin F, Sanchez-Cepedes M, Su GH, Zahurak M, Sidransky D et al. (2003). LKB1 protein expression in the evolution of glandular neoplasia of the lung. Clin Cancer Res 9: 2998–3003.

    CAS  PubMed  Google Scholar 

  • Guldberg P, thor Straten P, Ahrenkiel V, Seremet T, Kirkin AF, Zeuthen J . (1999). Somatic mutation of the Peutz–Jeghers syndrome gene, LKB1/STK11, in malignant melanoma. Oncogene 18: 1777–1780.

    Article  CAS  Google Scholar 

  • Hearle NC, Rudd MF, Lim W, Murday V, Lim AG, Phillips RK et al. (2006). Exonic STK11 deletions are not a rare cause of Peutz–Jeghers syndrome. J Med Genet 43: e15.

    Article  CAS  Google Scholar 

  • Hearle NC, Tomlinson I, Lim W, Murday V, Swarbrick E, Lim G et al. (2005). Sequence changes in predicted promoter elements of STK11/LKB1 are unlikely to contribute to Peutz–Jeghers syndrome. BMC Genomics 6: 38.

    Article  Google Scholar 

  • Hemminki A . (1999). The molecular basis and clinical aspects of Peutz–Jeghers syndrome. Cell Mol Life Sci 55: 735–750.

    Article  CAS  Google Scholar 

  • Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A et al. (1998). A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature 391: 184–187.

    Article  CAS  Google Scholar 

  • Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R et al. (1998). Peutz–Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18: 38–43.

    Article  CAS  Google Scholar 

  • Karuman P, Gozani O, Odze RD, Zhou XC, Zhu H, Shaw R et al. (2001). The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol Cell 7: 1307–1319.

    Article  CAS  Google Scholar 

  • Kishimoto M, Kohno T, Okudela K, Otsuka A, Sasaki H, Tanabe C et al. (2005). Mutations and deletions of the CBP gene in human lung cancer. Clin Cancer Res 11: 512–519.

    CAS  PubMed  Google Scholar 

  • Kosaka T, Yatabe Y, Endoh H, Kuwano H, Takahashi T, Mitsudomi T . (2004). Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res 64: 8919–8923.

    Article  CAS  Google Scholar 

  • Launonen V . (2005). Mutations in the human LKB1/STK11 gene. Hum Mutat 26: 291–297.

    Article  CAS  Google Scholar 

  • Matsumoto S, Iwakawa R, Kohno T, Suzuki K, Matsuno Y, Yamamoto S et al. (2006a). Frequent EGFR mutations in noninvasive bronchioloalveolar carcinoma. Int J Cancer 118: 2498–2504.

    Article  CAS  Google Scholar 

  • Matsumoto S, Takahashi K, Iwakawa R, Matsuno Y, Nakanishi Y, Kohno T et al. (2006b). Frequent EGFR mutations in brain metastases of lung adenocarcinoma. Int J Cancer 119: 1491–1494.

    Article  CAS  Google Scholar 

  • Park MJ, Shimizu K, Nakano T, Park YB, Kohno T, Tani M et al. (2003). Pathogenetic and biologic significance of TP14ARF alterations in nonsmall cell lung carcinoma. Cancer Genet Cytogenet 141: 5–13.

    Article  CAS  Google Scholar 

  • Sanchez-Cespedes M, Ahrendt SA, Piantadosi S, Rosell R, Monzo M, Wu L et al. (2001). Chromosomal alterations in lung adenocarcinoma from smokers and nonsmokers. Cancer Res 61: 1309–1313.

    CAS  PubMed  Google Scholar 

  • Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM et al. (2002). Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 62: 3659–3662.

    CAS  PubMed  Google Scholar 

  • Shigematsu H, Gazdar AF . (2006). Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer 118: 257–262.

    Article  CAS  Google Scholar 

  • Su GH, Hruban RH, Bansal RK, Bova GS, Tang DJ, Shekher MC et al. (1999). Germline and somatic mutations of the STK11/LKB1 Peutz–Jeghers gene in pancreatic and biliary cancers. Am J Pathol 154: 1835–1840.

    Article  CAS  Google Scholar 

  • Tiainen M, Vaahtomeri K, Ylikorkala A, Makela TP . (2002). Growth arrest by the LKB1 tumor suppressor: induction of p21(WAF1/CIP1). Hum Mol Genet 11: 1497–1504.

    Article  CAS  Google Scholar 

  • Tomizawa Y, Kohno T, Kondo H, Otsuka A, Nishioka M, Niki T et al. (2002). Clinicopathological significance of epigenetic inactivation of RASSF1A at 3p21.3 in stage I lung adenocarcinoma. Clin Cancer Res 8: 2362–2368.

    CAS  PubMed  Google Scholar 

  • Upadhyay S, Liu C, Chatterjee A, Hoque MO, Kim MS, Engles J et al. (2006). LKB1/STK11 Suppresses Cyclooxygenase-2 Induction and Cellular Invasion through PEA3 in Lung Cancer. Cancer Res 66: 7870–7879.

    Article  CAS  Google Scholar 

  • Volikos E, Robinson J, Aittomaki K, Mecklin JP, Jarvinen H, Westerman AM et al. (2006). LKB1 exonic and whole gene deletions are a common cause of Peutz–Jeghers syndrome. J Med Genet 43: e18.

    Article  CAS  Google Scholar 

  • Westerman AM, Entius MM, de Baar E, Boor PP, Koole R, van Velthuysen ML et al. (1999). Peutz–Jeghers syndrome: 78-year follow-up of the original family. Lancet 353: 1211–1215.

    Article  CAS  Google Scholar 

  • Zhong D, Guo L, de Aguirre I, Liu X, Lamb N, Sun SY et al. (2006). LKB1 mutation in large cell carcinoma of the lung. Lung Cancer 53: 285–294.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid from the Ministry of Health, Labor and Welfare of Japan for the 3rd-term Comprehensive 10-year Strategy for Cancer Control and for Cancer Research (16-1), from the program for promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NiBio), and from National Cancer Institute Lung Cancer SPORE (Grant Number: P50CA70907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Yokota.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, S., Iwakawa, R., Takahashi, K. et al. Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene 26, 5911–5918 (2007). https://doi.org/10.1038/sj.onc.1210418

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210418

Keywords

This article is cited by

Search

Quick links