Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Ceramide regulates cellular homeostasis via diverse stress signaling pathways

Abstract

The sphingolipid ceramide is an important second signal molecule that regulates diverse signaling pathways involving apoptosis, cell senescence, the cell cycle, and differentiation. For the most part, ceramide's effects are antagonistic to growth and survival. Interestingly, ceramide and the pro-growth agonist, diacylglycerol (DAG) appear to be regulated simultaneously but in opposite directions in the sphingomyelin cycle. While ceramide stimulates signal transduction pathways that are associated with cell death or at least are inhibitory to cell growth (eg stress-activated protein kinase, SAPK, pathways), DAG activates the classical and novel isoforms of the protein kinase C (PKC) family. These PKC isoforms are associated with cell growth and cell survival. Furthermore, DAG activation of PKC stimulates other signal transduction pathways that support cell proliferation (eg mitogen-activated protein kinase, MAPK, pathways). Thus, ceramide and DAG generation may serve to monitor cellular homeostasis by inducing pro-death or pro-growth pathways, respectively. The production of ceramide is emerging as a fixture of programmed cell death. Ceramide levels are elevated in response to diverse stress challenges including chemotherapeutic drug treatment, irradiation, or treatment with pro-death ligands such as tumor necrosis factor α, TNF α. Consistent with this notion, ceramide itself is a potent apoptogenic agent. Ceramide activates stress-activated protein kinases like c-jun N-terminal kinase (JNK) and thus affects transcription pathways involving c-jun. Ceramide activates protein phosphatases such as protein phosphatase 1 (PP1) and protein phosphatase 2 (PP2A). Ceramide activation of protein phosphatases has been shown to promote inactivation of a number of pro-growth cellular regulators including the kinases PKC α and Akt, Bcl2 and the retinoblastoma protein. A new role has recently emerged for ceramide in the regulation of protein synthesis. Ceramide-induced activation of double-stranded RNA-dependent protein kinase (PKR), a protein kinase important in anti-viral host defense mechanisms and recently implicated in cellular stress pathways, results in the inhibition of protein synthesis as a prelude to cell death. Taken together, these properties of ceramide suggest that this important second-signal molecule may have useful properties as an anti-neoplastic agent. Thus, strategies to promote ceramide metabolism or use of ceramide analogs directly may one day become useful in the treatment of diseases like leukemia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Hannun YA . The sphingomyelin cycle and the second messenger function of ceramide J Biol Chem 1994 269: 3125–3128

    Article  CAS  PubMed  Google Scholar 

  2. Nishizzuka Y . Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C Science 1992 258: 607–614

    Article  Google Scholar 

  3. May WS . Control of apoptosis by cytokines Adv Pharmacol 1997 41: 219–246

    Article  CAS  PubMed  Google Scholar 

  4. McCubrey JA, May WS, Duronio V, Mufson A . Serine/threonine phosphorylation in cytokine signal transduction Leukemia 2000 14: 9–21

    Article  CAS  PubMed  Google Scholar 

  5. Smyth ML, Obeid LM, Hannun YA . Ceramide: a novel lipid mediator of apoptosis Adv Pharmacol 1997 41: 133–154

    Article  CAS  PubMed  Google Scholar 

  6. Hannun YA . Functions of ceramide in coordinating cellular responses in stress Science 1996 274: 1855–1859

    Article  CAS  PubMed  Google Scholar 

  7. Jarvis WD, Grant S, Kolesnick RN . Ceramide and the induction of apoptosis Clin Cancer Res 1996 2: 1–6

    CAS  PubMed  Google Scholar 

  8. Basu S, Kolesnick R . Stress signals for apoptosis: ceramide and c-jun kinase Oncogene 1998 17: 3277–3285

    Article  PubMed  Google Scholar 

  9. Kolesnick RN, Kronke M . Regulation of ceramide production and apoptosis Ann Rev Physiol 1998 60: 643–645

    Article  CAS  Google Scholar 

  10. Kolesnick R, Hannun YA . Ceramide and apoptosis Trends Biochem Sci 1999 24: 224–225

    Article  CAS  PubMed  Google Scholar 

  11. Hannun YA, Luberto C . Ceramide in the eukaryotic stress response Trends Cell Biol 2000 10: 73–80

    Article  CAS  PubMed  Google Scholar 

  12. Luberto C, Hannun YA . Sphingomyelin synthetase, a potential regulator of intracellular levels of ceramide and diacylglycerol during SV40 transformation J Biol Chem 1998 273: 14550–14559

    Article  CAS  PubMed  Google Scholar 

  13. Jarvis WD, Fornari FA, Browning JL, Gewirtz DA, Kolesnick RN, Grant S . Attenuation of ceramide-induced apoptosis by diglyceride in human myeloid leukemia cells J Biol Chem 1994 269: 31685–31692

    Article  CAS  PubMed  Google Scholar 

  14. Lee JY, Hannun YA, Obeid LM . Ceramide inactivates cellular protein kinase C alpha J Biol Chem 1996 271: 13169–13174

    Article  CAS  PubMed  Google Scholar 

  15. Chmura SJ, Nodzenski E, Weichselbaum RR, Quintans J . Protein kinase C inhibition induces apoptosis and ceramide production through activation of a neutral sphingomyelinase Cancer Res 1996 56: 2711–2714

    CAS  PubMed  Google Scholar 

  16. Lee JY, Hannun YA, Obeid LM . Functional dichotomy of protein kinase C (PKC) in tumor necrosis factor-alpha (TNF-alpha) signal transduction in L929 cells. Translocation and inactivation of PKC by TNF-alpha J Biol Chem 2000 275: 29290–29298

    Article  CAS  PubMed  Google Scholar 

  17. Ruvolo PP, Deng X, Ito T, Carr BK, May WS . Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A J Biol Chem 1999 274: 20296–20300

    Article  CAS  PubMed  Google Scholar 

  18. Strum JC, Small GW, Pauig SB, Daniel LW . 1-beta-D-arabinofuranosylcytosine stimulates ceramide and diglyceride formation in HL-60 cells J Biol Chem 1994 269: 15493–15497

    Article  CAS  PubMed  Google Scholar 

  19. Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick RN . Ceramide synthetase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals Cell 1995 82: 405–411

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Alter N, Reed JC, Borner C, Obeid LM, Hannun YA . Bcl-2 interrupts the ceramide-mediated pathway of cell death Proc Natl Acad Sci USA 1996 93: 5325–5328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Obeid LM, Lindardic CM, Karolak LA, Hannun YA . Programmed cell death induced by ceramide Science 1993 259: 1769–1771

    Article  CAS  PubMed  Google Scholar 

  22. Bielawska AE, Shapiro JP, Jiang L, Melkonyan HS, Piot C, Wolfe CL, Tomei LD, Hannun Y, Umansky SR . Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion Am J Pathol 1997 151: 1257–1263

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tepper CG, Jayadev S, Liu B, Bielawska A, Wolff RA, Yonehara S, Hannun YA, Seldin MF . Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity Proc Natl Acad Sci USA 1995 92: 8443–8447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Quintans J, Kilkus J, McShan CL, Gottschalk AR, Dawson G . Ceramide mediates the apoptotic response of WEHI 231 cells to anti-immunoglobulin, corticosteroids and irradiation Biochem Biophys Res Commun 1994 202: 710–714

    Article  CAS  PubMed  Google Scholar 

  25. Westwick JK, Bielawaska AE, Dbaibo G, Hannun YA, Brenner DA . Ceramide activates the stress-activated protein kinases J Biol Chem 1995 270: 22689–22692

    Article  CAS  PubMed  Google Scholar 

  26. Basu S, Kolesnick R . Stress signals for apoptosis: ceramide and c-Jun kinase Oncogene 1998 17: 3277–3285

    Article  PubMed  Google Scholar 

  27. Jarvis WD, Fornari FA, Auer KL, Freemerman AJ, Szabo E, Birrer MJ, Johnson CR, Barbour SE, Dent P, Grant S . Coordinate regulation of stress- and mitogen-activated protein kinases in the apoptotic actions of ceramide and sphingosine Mol Pharmacol 1997 52: 935–947

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Yao B, Delikat S, Bayoumy S, Lin XH, Basu S, McGinley M, Chan-Hui PY, Lichenstein H, Kolesnick R . Kinase suppressor of Ras is ceramide-activated protein kinase Cell 1997 89: 63–72

    Article  CAS  PubMed  Google Scholar 

  29. Basu S, Bayoumy S, Zhang Y, Lozano J, Kolesnick R . BAD enables ceramide to signal apoptosis via Ras and Raf-1 J Biol Chem 1998 273: 30419–30426

    Article  CAS  PubMed  Google Scholar 

  30. Xing HR, Lozano J, Kolesnick R . Epidermal growth factor treatment enhances the kinase activity of kinase suppressor of Ras J Biol Chem 2000 275: 17276–17280

    Article  CAS  PubMed  Google Scholar 

  31. Lozano J, Berra E, Municio MM, Diaz-Meco MT, Dominguez I, Sanz L, Moscat J . Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase J Biol Chem 1994 269: 19200–19202

    Article  CAS  PubMed  Google Scholar 

  32. Muller G, Ayoub M, Storz P, Rennecke J, Fabbro D, Pfizenmaier K . PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid EMBO J 1995 14: 1961–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bourbon NA, Yun J, Kester M . Ceramide directly activates protein kinase C ζ to regulate a stress-activated protein kinase signaling complex J Biol Chem 2000 275: 35617–35623

    Article  CAS  PubMed  Google Scholar 

  34. Scheid MP, Duronio V . Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/akt: involvement of MEK upstream of Bad phosphorylation Proc Natl Acad Sci USA 1998 95: 7439–7444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schubert KM, Scheid MP, Duronio V . Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473 J Biol Chem 2000 275: 13330–13335

    Article  CAS  PubMed  Google Scholar 

  36. Salinas M, Lopez-Valdaliso R, Martin D, Alvarez A, and Cuadrado A . Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells Mol Cell Neurosci 2000 15: 156–169

    Article  CAS  PubMed  Google Scholar 

  37. Dobrowsky RT, Hannun YA . Ceramide stimulates a cytosolic protein phosphatase 2A J Biol Chem 1992 267: 5048–5051

    Article  CAS  PubMed  Google Scholar 

  38. Dobrowsky RT, Kamibayasha C, Mumby MC, Hannun YA . Ceramide activates a heterotrimeric protein phosphatase 2A J Biol Chem 1993 268: 15523–15530

    Article  CAS  PubMed  Google Scholar 

  39. Chalfant CE, Kishikawa K, Mumby MC, Kamibayashi C, Bielawska A, Hannun YA . Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A. Activation is stereospecific and regulated by phosphatidic acid J Biol Chem 1999 274: 20313–20317

    Article  CAS  PubMed  Google Scholar 

  40. Kolesnick RN, Goni FM, Alonso A . Compartmentalization of ceramide signaling: physical foundations and biological effects J Cell Physiol 2000 184: 285–300

    Article  CAS  PubMed  Google Scholar 

  41. Kolesnick RN, Kronke M . Regulation of ceramide production and apoptosis Ann Rev Physiol 1998 60: 643–665

    Article  CAS  Google Scholar 

  42. Tepper AD, Ruurs P, Wiedmer T, Sims PJ, Borst J, van Blitterswijk WJ . Sphingomyelin hydrolysis to ceramide during the execution phase of apoptosis results from phospholipid scrambling and alters cell-surface morphology J Cell Biol 2000 150: 155–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Okazaki T, Bell RM, Hannun YA . Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation J Biol Chem 1989 264: 19076–19080

    Article  CAS  PubMed  Google Scholar 

  44. Kolesnick RN . Sphingomyelin and derivatives as cellular signals Prog Lipid Res 1991 30: 1–38

    Article  CAS  PubMed  Google Scholar 

  45. Santana P, Pena LA, Haimovitz-Friedman A, Martin S, Green D, McLoughlin M, Cordon-Cardo C, Schuchman EH, Fuks Z, Kolesnick R . Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis Cell 1996 86: 189–199

    Article  CAS  PubMed  Google Scholar 

  46. Liu B, Hannun YA . Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione J Biol Chem 1997 272: 16281–16287

    Article  CAS  PubMed  Google Scholar 

  47. Liu B, Andrieu-Abadie N, Levade T, Zhang P, Obeid LM, Hannun YA . Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alpha-induced cell death J Biol Chem 1998 273: 11313–11320

    Article  CAS  PubMed  Google Scholar 

  48. Lozano J, Menendez S, Morales A, Ehleiter D, Liao WC, Wagman R, Haimovitz-Friedman A, Fuks Z, Kolesnick R . Cell Autonomous apoptosis defects in acid sphingomyelinase knockout fibroblasts J Biol Chem 2001 276: 442–448

    Article  CAS  PubMed  Google Scholar 

  49. Brady RO, Kanfer JN, Mock MB, Fredrickson DS . The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann-Pick disease Proc Natl Acad Sci USA 1966 55: 366–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kronke M . Involvement of sphingomyelinases in TNF signaling pathways Chem Phys Lipids 1999 102: 157–166

    Article  CAS  PubMed  Google Scholar 

  51. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP . Tumor necrosis factor receptor and Fas signaling mechanisms Annu Rev Immunol 1999 17: 331–367

    Article  CAS  PubMed  Google Scholar 

  52. Adam D, Wiegmann K, Adam-Klages S, Ruff A, Kronke M . A novel cytoplasmic domain of the p55 tumor necrosis factor receptor initiates the neutral sphingomyelinase pathway J Biol Chem 1996 271: 14617–14622

    Article  CAS  PubMed  Google Scholar 

  53. Wiegmann K, Schutze S, Machleidt T, Witte D, Kronke M . Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling Cell 1994 78: 1005–1015

    Article  CAS  PubMed  Google Scholar 

  54. Adam-Klages S, Adam D, Wiegmann K, Struve S, Kolanus W, Schneider-Mergener J, Kronke M . FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase Cell 1996 86: 937–947

    Article  CAS  PubMed  Google Scholar 

  55. Sawai H, Hannun YA . Ceramide and sphingomyelinases in the regulation of stress responses Chem Phys Lipids 1999 102: 141–147

    Article  CAS  PubMed  Google Scholar 

  56. Chatterjee S . Neutral sphingomyelinase: past, present and future Chem Phys Lipids 1999 102: 79–96

    Article  CAS  PubMed  Google Scholar 

  57. Yoshimura S, Banno Y, Nakashima S, Hayashi K, Yamakawa H, Sawada M, Sakai N, Nozawa Y . Inhibition of neutral sphingomyelinase activation and ceramide formation by glutathione in hypoxic PC12 cell death J Neurochem 1999 73: 675–683

    Article  CAS  PubMed  Google Scholar 

  58. Liu B, Hannun YA . Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione J Biol Chem 1997 272: 16281–16287

    Article  CAS  PubMed  Google Scholar 

  59. Slater AF, Stefan C, Nobel I, van den Dobbelsteen DJ, Orrenius S . Signaling mechanisms and oxidative stress in apoptosis Toxicol Lett 1995 82–83: 149–153

    Article  PubMed  Google Scholar 

  60. Bernardo K, Hurwitz R, Zenk T, Desnick RJ, Ferlinz K, Schuchman EH, Sandhoff K . Purification, characterization, and biosynthesis of human acid ceramidase J Biol Chem 1995 270: 11098–11102

    Article  CAS  PubMed  Google Scholar 

  61. El Bawab S, Bielawska A, Hannun YA . Purification and characterization of a membrane-bound nonlysosomal ceramidase from rat brain J Biol Chem 1999 274: 27948–27955

    Article  CAS  PubMed  Google Scholar 

  62. Coroneos E, Martinez M, McKenna S, Kester M . Differential regulation of sphingomyelinase and ceramidase activities by growth factors and cytokines. Implications for cellular proliferation and differentiation J Biol Chem 1995 270: 23305–23309

    Article  CAS  PubMed  Google Scholar 

  63. Ohta H, Sweeney EA, Masamune A, Yatomi Y, Hakomori S, Igarashi Y . Induction of apoptosis by sphingosine in human leukemic HL-60 cells: a possible endogenous modulator of apoptotic DNA fragmentation occurring during phorbol ester-induced differentiation Cancer Res 1995 55: 691–697

    CAS  PubMed  Google Scholar 

  64. Jarvis WD, Fornari FA, Traylor RS, Martin HA, Kramer LB, Erukulla RK, Bittman R, Grant S . Induction of apoptosis and potentiation of ceramide-mediated cytotoxicity by sphingoid bases in human myeloid leukemia cells J Biol Chem 1996 271: 8275–8284

    Article  CAS  PubMed  Google Scholar 

  65. Nava VE, Cuvillier O, Edsall LC, Kimura K, Milstien S, Gelmann EP, Spiegel S . Sphingosine enhances apoptosis of radiation-resistant prostate cancer cells Cancer Res 2000 60: 4468–4474

    CAS  PubMed  Google Scholar 

  66. Stevens VL, Nimkar S, Jamison WC, Liotta DC, Merrill AH . Characteristics of the growth inhibition and cytotoxicity of long-chain (sphingoid) bases for Chinese hamster ovary cells: evidence for an involvement of protein kinase C Biochim Biophys Acta 1990 1051: 37–45

    Article  CAS  PubMed  Google Scholar 

  67. Zhang H, Buckley NE, Gibson K, Spiegel S . Sphingosine stimulates cellular proliferation via a protein kinase C-independent pathway J Biol Chem 1990 265: 76–81

    Article  CAS  PubMed  Google Scholar 

  68. Spiegel S, Milstien S . Sphingosine-1-phosphate: signaling inside and out FEBS Lett 2000 476: 55–57

    Article  CAS  PubMed  Google Scholar 

  69. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, Spiegel S . Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate Nature 1996 381: 800–803

    Article  CAS  PubMed  Google Scholar 

  70. Coroneos E, Wang Y, Panuska JR, Templeton DJ, Kester M . Sphingolipid metabolites differentially regulate extracellular signal-regulated kinase and stress-activated protein kinase cascades Biochem J 1996 316: 13–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gomez-Munoz A, Duffy PA, Martin A, O'Brien L, Byun HS, Bittman R, Brindley DN . Short-chain ceramide-1-phosphates are novel stimulators of DNA synthesis and cell division: antagonism by cell-permeable ceramides Mol Pharmacol 1995 47: 833–839

    CAS  PubMed  Google Scholar 

  72. Kolesnick RN, Hemer MR . Characterization of a ceramide kinase activity from human leukemia (HL-60) cells. Separation from diacylglycerol kinase activity J Biol Chem 1990 265: 18803–18808

    Article  CAS  PubMed  Google Scholar 

  73. Gomez-Munoz A, Duffy PA, Martin A, O'Brien L, Byun HS, Bittman R, Brindley DN . Short-chain ceramide-1-phosphates are novel stimulators of DNA synthesis and cell division: antagonism by cell-permeable ceramides Mol Pharmacol 1995 47: 833–839

    CAS  PubMed  Google Scholar 

  74. Ichikawa S, Hirabayashi Y . Glucosylceramide synthase and glycosphingolipid synthesis Trends Cell Biol 1998 8: 198–202

    Article  CAS  PubMed  Google Scholar 

  75. Lavie Y, Cao H, Bursten SL, Giuliano AE, Cabot MC . Accumulation of glucosylceramides in multidrug-resistant cancer cells J Biol Chem 1996 271: 19530–19536

    Article  CAS  PubMed  Google Scholar 

  76. Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, Birrer MJ, Szabo E, Zon LI, Kyriakis JM, Haimovitz-Friedman A, Fuks Z, Kolesnick RN . Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis Nature 1996 380: 75–79

    Article  CAS  PubMed  Google Scholar 

  77. Kyriakis JM, Avruch J . Sounding the alarm: protein kinase cascades activated by stress and inflammation J Biol Chem 1996 271: 24313–24316

    Article  CAS  PubMed  Google Scholar 

  78. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR . The stress-activated protein kinase subfamily of c-Jun kinases Nature 1994 369: 156–160

    Article  CAS  PubMed  Google Scholar 

  79. Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ . JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain Cell 1994 76: 1025–1037

    Article  CAS  PubMed  Google Scholar 

  80. Brenner B, Koppenhoefer U, Weinstock C, Linderkamp O, Lang F, Gulbins E . Fas- or ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153 J Biol Chem 1997 272: 22173–22181

    Article  CAS  PubMed  Google Scholar 

  81. Wang YM, Seibenhener ML, Vandenplas ML, Wooten MW . Atypical PKC zeta is activated by ceramide, resulting in coactivation of NF-kappaB/JNK kinase and cell survival J Neurosci Res 1999 55: 293–302

    Article  CAS  PubMed  Google Scholar 

  82. Shirakabe K, Yamaguchi K, Shibuya H, Irie K, Matsuda S, Moriguchi T, Gotoh Y, Matsumoto K, Nishida E . TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase J Biol Chem 1997 272: 8141–8144

    Article  CAS  PubMed  Google Scholar 

  83. Sawai H, Okazaki T, Yamamoto H, Okano H, Takeda Y, Tashima M, Sawada H, Okuma M, Ishikura H, Umehara H, Domae N . Requirement of AP-1 for ceramide-induced apoptosis in human leukemia HL-60 cells J Biol Chem 1995 270: 27326–27331

    Article  CAS  PubMed  Google Scholar 

  84. Jarvis WD, Johnson CR, Fornari FA, Park JS, Dent P, Grant S . Evidence that the apoptotic actions of etoposide are independent of c-Jun/activating protein-1-mediated transregulation J Pharmacol Exp Ther 1999 290: 1384–1392

    CAS  PubMed  Google Scholar 

  85. Ballou LR, Chao CP, Holness MA, Barker SC, Raghow R . Interleukin-1-mediated PGE2 production and sphingomyelin metabolism. Evidence for the regulation of cyclooxygenase gene expression by sphingosine and ceramide J Biol Chem 1992 267: 20044–20050

    Article  CAS  PubMed  Google Scholar 

  86. Subbaramaiah K, Chung WJ, Dannenberg AJ . Ceramide regulates the transcription of cyclooxygenase-2. Evidence for involvement of extracellular signal-regulated kinase/c-Jun N-terminal kinase and p38 mitogen-activated protein kinase pathways J Biol Chem 1998 273: 32943–32949

    Article  CAS  PubMed  Google Scholar 

  87. DuBois RN, Shao J, Tsujii M, Sheng H, Beauchamp RD . G1 delay in cells overexpressing prostaglandin endoperoxide synthase-2 Cancer Res 1996 56: 733–737

    CAS  PubMed  Google Scholar 

  88. Tsujii M, DuBois RN . Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2 Cell 1995 83: 493–501

    Article  CAS  PubMed  Google Scholar 

  89. Ruvolo PP, Gao F, Blalock WL, Deng X, May WS . Ceramide regulates protein synthesis by a novel mechanism involving the cellular PKR activator RAX J Biol Chem 2001 276: 11754–11765

    Article  CAS  PubMed  Google Scholar 

  90. Yan F, Polk DB . Kinase suppressor of ras is necessary for tumor necrosis factor alpha activation of extracellular signal-regulated kinase/mitogen-activated protein kinase in intestinal epithelial cells Cancer Res 2001 61: 963–969

    CAS  PubMed  Google Scholar 

  91. Procyk KJ, Rippo MR, Testi R, Hofmann F, Parker PJ, Baccarini M . Lipopolysaccharide induces jun N-terminal kinase activation in macrophages by a novel Cdc42/Rac-independent pathway involving sequential activation of protein kinase C zeta and phosphatidylcholine-dependent phospholipase C Blood 2000 96: 2592–2598

    Article  CAS  PubMed  Google Scholar 

  92. Doornbos RP, Theelen M, van der Hoeven PC, van Blitterswijk WJ, Verkleij AJ, van Bergen en Henegouwen PM . Protein kinase C zeta is a negative regulator of protein kinase B activity J Biol Chem 1999 274: 8589–8596

    Article  CAS  PubMed  Google Scholar 

  93. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G . Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt Science 1997 278: 687–689

    Article  CAS  PubMed  Google Scholar 

  94. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME . Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery Cell 1997 91: 231–241

    Article  CAS  PubMed  Google Scholar 

  95. Chiang C-W, Harris G, Ellig C, Masters SC, Subramanian R, Shenolikar S, Wadzinski BE, Yang E . Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin-3-dependent lymphoid cells by a mechanism requiring 14–3-3 dissociation Blood 2001 97: 1289–1297

    Article  CAS  PubMed  Google Scholar 

  96. Dbaibo GS, Pushkareva MY, Jayadev S, Schwarz JK, Horowitz JM, Obeid LM, Hannun YA . Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest Proc Natl Acad Sci USA 1995 92: 1347–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kishikawa K, Chalfant CE, Perry DK, Bielawska A, Hannun YA . Phosphatidic acid is a potent and selective inhibitor of protein phosphatase 1 and an inhibitor of ceramide-mediated responses J Biol Chem 1999 274: 21335–21341

    Article  CAS  PubMed  Google Scholar 

  98. Ruvolo PP, Deng X, Carr BK, May WS . A functional role for mitochondrial PKC α in Bcl2 phosphorylation and suppression of apoptosis J Biol Chem 1998 273: 25436–25442

    Article  CAS  PubMed  Google Scholar 

  99. Ito T, Deng X, Carr BK, May WS . Bcl2 phosphorylation required for anti-apoptosis function J Biol Chem 1997 272: 11671–11673

    Article  CAS  PubMed  Google Scholar 

  100. Ruvolo PP, Deng X, May WS . Phosphorylation of Bcl2 and regulation of apoptosis Leukemia 2001 15: 515–522

    Article  CAS  PubMed  Google Scholar 

  101. Deng X, Ito T, Carr B, Mumby M, May WS . Reversible phosphorylation of Bcl2 following interleukin-3 or bryostatin-1 is mediated by direct interaction of protein phosphatase 2A J Biol Chem 1998 273: 34157–34163

    Article  CAS  PubMed  Google Scholar 

  102. Paumen MB, Ishida Y, Muramatsu M, Yamamoto M, Honjo T . Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis J Biol Chem 1997 272: 3324–3329

    Article  CAS  PubMed  Google Scholar 

  103. Paumen MB, Ishida Y, Han H, Muramatsu M, Eguchi Y, Tsujimoto Y, Honjo T . Direct interaction of the mitochondrial membrane protein carnitine palmitoyltransferase I with Bcl-2 Biochem Biophys Res Commun 1997 231: 523–525

    Article  CAS  PubMed  Google Scholar 

  104. Franklin RA, McCubrey JA . Kinases: positive and negative regulators of apoptosis Leukemia 2000 14: 2019–2034

    Article  CAS  PubMed  Google Scholar 

  105. Deng X, Ruvolo P, Carr B, May WS . Survival function of ERK1/2 as IL-3-activated staurosporine-resistant Bcl2 kinases Proc Natl Acad Sci USA 2000 97: 1578–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Moye PW, Blalock WL, Hoyle PE, Chang F, Franklin RA, Weinstein-Oppenheimer C, Pearce M, Steelman L, McMahon M, McCubrey JA . Synergy between Raf and BCL2 in abrogating the cytokine dependency of hematopoietic cells Leukemia 2000 14: 1060–1079

    Article  CAS  PubMed  Google Scholar 

  107. Blalock WL, Moye PW, Chang F, Pearce M, Steelman LS, McMahon M, McCubrey JA . Combined effects of aberrant MEK1 activity and BCL2 overexpression on relieving the cytokine dependency of human and murine hematopoietic cells Leukemia 2000 14: 1080–1096

    Article  CAS  PubMed  Google Scholar 

  108. Ito T, Jagus R, May WS . Interleukin-3 stimulates protein synthesis by regulating double-stranded RNA-dependent protein kinase (PKR) in a novel cytokine signaling pathway Proc Natl Acad Sci USA 1994 91: 7455–7459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Srivastava SP, Davies MV, Kaufman RJ . Calcium depletion from the endoplasmic reticulum activates the double-stranded RNA-dependent protein kinase (PKR) to inhibit protein synthesis J Biol Chem 1995 270: 16619–16624

    Article  CAS  PubMed  Google Scholar 

  110. Yeung MC, Liu J, Lau AS . An essential role for the interferon-inducible, double-stranded RNA-activated protein kinase PKR in the tumor necrosis factor-induced apoptosis in U937 cells Proc Natl Acad Sci USA 1996 93: 12451–12455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Der SD, Yang YL, Weissmann C, Williams BR . A double-stranded RNA-activated protein kinase-dependent pathway mediating stress-induced apoptosis Proc Natl Acad Sci USA 1997 94: 3279–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ito T, Yang M, May WS . RAX, a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling J Biol Chem 1999 274: 15427–15432

    Article  CAS  PubMed  Google Scholar 

  113. Clemens MJ, Elia A . The double-stranded RNA-dependent protein kinase PKR: structure and function J Interfer Cytokine Res 1997 17: 503–524

    Article  CAS  Google Scholar 

  114. Tan SL, Katze MG . The emerging role of the interferon-induced PKR protein kinase as an apoptotic effector: a new face of death? J Interfer Cytokine Res 1999 19: 543–554

    Article  CAS  Google Scholar 

  115. Williams BRG . PKR: a sentinel kinase for cellular stress Oncogene 1999 18: 6112–6120

    Article  CAS  PubMed  Google Scholar 

  116. Senchenkov A, Litvak DA, Cabot MC . Targeting ceramide metabolism – a strategy for overcoming drug resistance J Natl Cancer Inst 2001 93: 347–357

    Article  CAS  PubMed  Google Scholar 

  117. Cai Z, Bettaieb A, Mahdani NE, Legres LG, Stancou R, Masliah J, Chouaib S . Alteration of the sphingomyelin/ceramide pathway is associated with resistance of human breast carcinoma MCF7 cells to tumor necrosis factor-alpha-mediated cytotoxicity J Biol Chem 1997 272: 6918–6926

    Article  CAS  PubMed  Google Scholar 

  118. Liu YY, Han TY, Giuliano AE, Cabot MC . Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells J Biol Chem 1999 274: 1140–1146

    Article  CAS  PubMed  Google Scholar 

  119. Liu YY, Han TY, Giuliano AE, Hansen N, Cabot MC . Uncoupling ceramide glycosylation by transfection of glucosylceramide synthase antisense reverses adriamycin resistance J Biol Chem 2000 275: 7138–7143

    Article  CAS  PubMed  Google Scholar 

  120. Michael JM, Lavin MF, Watters DJ . Resistance to radiation-induced apoptosis in Burkitt's lymphoma cells is associated with defective ceramide signaling Cancer Res 1997 57: 3600–3605

    CAS  PubMed  Google Scholar 

  121. Maurer BJ, Melton L, Billups C, Cabot MC, Reynolds CP . Synergistic cytotoxicity in solid tumor cell lines between N-(4-hydroxyphenyl)retinamide and modulators of ceramide metabolism J Natl Cancer Inst 2000 92: 1897–1909

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruvolo, P. Ceramide regulates cellular homeostasis via diverse stress signaling pathways. Leukemia 15, 1153–1160 (2001). https://doi.org/10.1038/sj.leu.2402197

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402197

Keywords

This article is cited by

Search

Quick links