Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Aerosol delivery of PEI–p53 complexes inhibits B16-F10 lung metastases through regulation of angiogenesis

Abstract

Inhibition of pulmonary metastases poses a difficult clinical challenge for current therapeutic regimens. We have developed an aerosol system utilizing a cationic polymer, polyethyleneimine (PEI), for topical gene delivery to the lungs as a novel approach for treatment of lung cancer. Using a B16-F10 murine melanoma model in C57BL/6 mice, we previously demonstrated that aerosol delivery of PEI–p53 DNA resulted in highly significant reductions in the tumor burden (P<.001) in treated animals, and also lead to about 50% increase in the mean length of survival of the mice-bearing B16-F10 lung tumors. The mechanisms of this antitumor effect of p53 are investigated in this report. Here, we demonstrate that the p53 transfection leads to an up-regulation of the antiangiogenic factor thrombospondin-1 (TSP-1) in the lung tissue and the serum of the mice. Furthermore, there is a down-regulation of vascular endothelial growth factor (VEGF) in the lung tissue and serum of the B16-F10 tumor-bearing mice treated with PEI–p53 DNA complexes, compared with untreated tumor-bearing animals. In addition, staining for von Willebrand factor (vWF), a marker for the angiogenic blood vessels, revealed that p53 treatment leads to a decrease in the angiogenic phenotype of the B16-F10 tumors. Immunohistochemistry for transgene expression reveals that the PEI–p53 aerosol complexes transfect mainly the epithelial cells lining the airways, with diffuse transfection in the alveolar lining cells, as well as, the tumor foci in the lung tissue. There was also some evidence of apoptosis in the lung tumor foci of animals treated with p53. The data suggest that aerosol delivery of PEI–p53 complexes leads to inhibition of B16-F10 lung metastases, in part by suppression of angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Greenblatt MS, Bennett WP, Hollstein M, Harris CC . Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis Cancer Res 1994 54: 4855–4878

    CAS  PubMed  Google Scholar 

  2. Lowe SW, Bodis S, McClatchey A et al. P53 status and the efficacy of cancer therapy in vivo Science 1994 266: 807–810

    Article  CAS  PubMed  Google Scholar 

  3. Roth JA, Swisher SG, Meyn RE . p53 tumor suppressor gene therapy for cancer Oncology (Huntington) 1999 13: 148–154

    CAS  Google Scholar 

  4. Dameron KM, Volpert OV, Tainsky MA, Bouck N . Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1 Science 1994 265: 1582–1584

    Article  CAS  PubMed  Google Scholar 

  5. Nagayama Y, Shigematsu K, Namba H et al. Inhibition of angiogenesis and tumorigenesis, and induction of dormancy by p53 in a p53-null thyroid carcinoma cell line in vivo Anticancer Res 2000 20: 2723–2728

    CAS  PubMed  Google Scholar 

  6. Holmgren L, Jackson G, Arbiser J . p53 induces angiogenesis-restricted dormancy in a mouse fibrosarcoma Oncogene 1998 17: 819–824

    Article  CAS  PubMed  Google Scholar 

  7. Hanahan D, Folkman J . Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis Cell 1996 86: 353–364

    Article  CAS  PubMed  Google Scholar 

  8. Rofstad EK, Halsor EF . Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts Cancer Res 2000 60: 4932–4938

    CAS  PubMed  Google Scholar 

  9. Li Q, Ahuja N, Burger PC, Issa JP . Methylation and silencing of the thrombospondin-1 promoter in human cancer Oncogene 1999 18: 3284–3289

    Article  CAS  PubMed  Google Scholar 

  10. Holmgren L, O'Reilly MS, Folkman J . Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression Nat Med 1995 1: 149–153

    Article  CAS  PubMed  Google Scholar 

  11. Zou Y, Zong G, Ling YH et al. Effective treatment of early endobronchial cancer with regional administration of liposome–p53 complexes J Natl Cancer Inst 1998 90: 1130–1137

    Article  CAS  PubMed  Google Scholar 

  12. Ramesh R, Saeki T, Smyth Templeton N et al. Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector Mol Ther 2001 3: 337–350

    Article  CAS  PubMed  Google Scholar 

  13. Swisher SG, Roth JA et al. Adenovirus-mediated p53 gene transfer in advanced non–small-cell lung cancer J Natl Cancer Inst 1999 91: 763–771

    Article  CAS  PubMed  Google Scholar 

  14. Densmore CL, Orson F, Xu B et al. Aerosol delivery of robust polyethyleneimine–DNA complexes for gene therapy and genetic immunization Mol Ther 2000 1: 180–188

    Article  CAS  PubMed  Google Scholar 

  15. Gautam A, Densmore CL, Xu B, Waldrep JC . Enhanced gene expression in mouse lung after PEI–DNA aerosol delivery Mol Ther 2000 2: 63–70

    Article  CAS  PubMed  Google Scholar 

  16. Gautam A, Densmore CL, Waldrep JC . Inhibition of experimental lung metastasis by aerosol delivery of PEI–p53 complexes Mol Ther 2000 2: 318–323

    Article  CAS  PubMed  Google Scholar 

  17. Densmore CL, Kleinerman ES, Gautam A et al. Growth suppression of established human osteosarcoma lung metastases in mice by aerosol gene therapy with PEI–p53 complexes Cancer Gene Ther 2001 8: 619–627 In press

    Article  CAS  PubMed  Google Scholar 

  18. Gautam A, Densmore CL, Waldrep JC . Pulmonary cytokine responses associated with PEI–DNA aerosol delivery Gene Ther 8: 254–257

  19. Fidler IJ, Nicolson GL . Tumor cell and host properties affecting the implantation and survival of blood-borne metastatic variants of B16 melanoma Isr J Med Sci 1978 14: 38–50

    CAS  PubMed  Google Scholar 

  20. Kao KJ, Klein PA . A monoclonal antibody–based enzyme linked immunosorbent assay for quantitation of plasma thrombospondin Am J Clin Pathol 1986 86: 317–323

    Article  CAS  PubMed  Google Scholar 

  21. Gautam A, Densmore CL, Golunski E et al. Transgene expression in mouse airway epithelium by aerosol gene therapy with PEI–DNA complexes Mol Ther 2001 3: 551–556

    Article  CAS  PubMed  Google Scholar 

  22. Zanetta L, Marcus SG, Vasile J et al. Expression of Von Willebrand factor, an endothelial cell marker, is up-regulated by angiogenesis factors: a potential method for objective assessment of tumor angiogenesis Int J Cancer 2000 85: 281–288

    Article  CAS  PubMed  Google Scholar 

  23. Volpert OV, Lawler J, Bouck NP . A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin-1 Proc Natl Acad Sci USA 1998 95: 6343–6348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jimenez B, Volpert OV, Crawford SE . Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1 Nat Med 2000 6: 41–48

    Article  CAS  PubMed  Google Scholar 

  25. Jin RJ, Kwak C, Lee SG . The application of an anti-angiogenic gene (thrombospondin-1) in the treatment of human prostate cancer xenografts Cancer Gene Ther 2000 7: 1537–1542

    Article  CAS  PubMed  Google Scholar 

  26. Xu M, Kumar D, Stass SA, Mixson AJ . Gene therapy with p53 and a fragment of thrombospondin I inhibits human breast cancer in vivo Mol Genet Metab 1998 63: 103–109

    Article  CAS  PubMed  Google Scholar 

  27. Zhang L et al. Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression Cancer Res 2000 60: 3655–3661

    CAS  PubMed  Google Scholar 

  28. Bouvet M, Ellis LM, Nishizaki M et al. Adenovirus-mediated wild-type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer Cancer Res 1998 58: 2288–2292

    CAS  PubMed  Google Scholar 

  29. Nishizaki M, Fujiwara T, Tanida T et al. Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effect Clin Cancer Res 1999 5: 1015–1023

    CAS  PubMed  Google Scholar 

  30. Sheu JR, Fu CC, Tsai ML, Chung WJ . Effect of U-995, a potent shark cartilage-derived angiogenesis inhibitor, on anti-angiogenesis and anti-tumor activities Anticancer Res 1998 18: 4435–4441

    CAS  PubMed  Google Scholar 

  31. Shalinsky DR, Brekken J, Zou H et al. Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials Ann NY Acad Sci 1999 878: 236–270

    Article  CAS  PubMed  Google Scholar 

  32. Kalechman Y, Strassmann G, Albeck M, Sredni B . Up-regulation by ammonium trichloro(dioxoethylene-0,0′) tellurate (AS101) of Fas/Apo-1 expression on B16 melanoma cells: implications for the antitumor effects of AS101 J'Immunol 1998 161: 3536–3542

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Clifford Waldrep.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gautam, A., Densmore, C., Melton, S. et al. Aerosol delivery of PEI–p53 complexes inhibits B16-F10 lung metastases through regulation of angiogenesis. Cancer Gene Ther 9, 28–36 (2002). https://doi.org/10.1038/sj.cgt.7700405

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700405

Keywords

This article is cited by

Search

Quick links