Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of immunotherapy resistance: lessons from glioblastoma

Abstract

Glioblastoma (GBM) is the deadliest form of brain cancer, with a median survival of less than 2 years despite surgical resection, radiation, and chemotherapy. GBM’s rapid progression, resistance to therapy, and inexorable recurrence have been attributed to several factors, including its rapid growth rate, its molecular heterogeneity, its propensity to infiltrate vital brain structures, the regenerative capacity of treatment-resistant cancer stem cells, and challenges in achieving high concentrations of chemotherapeutic agents in the central nervous system. Escape from immunosurveillance is increasingly recognized as a landmark event in cancer biology. Translation of this framework to clinical oncology has positioned immunotherapy as a pillar of cancer treatment. Amid the bourgeoning successes of cancer immunotherapy, GBM has emerged as a model of resistance to immunotherapy. Here we review the mechanisms of immunotherapy resistance in GBM and discuss how insights into GBM–immune system interactions might inform the next generation of immunotherapeutics for GBM and other resistant pathologies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Mechanisms of systemic immunosuppression in GBM.
Fig. 3: Selected therapeutic approaches for GBM and their immunological targets.
Fig. 4: Cycle of immunotherapy resistance involving intrinsic, adaptive, and acquired mechanisms.

Similar content being viewed by others

References

  1. Nachman, M. W. & Crowell, S. L. Estimate of the mutation rate per nucleotide in humans. Genetics 156, 297–304 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532 (1988).

    CAS  PubMed  Google Scholar 

  3. Hastings, K. G. et al. Socioeconomic differences in the epidemiologic transition from heart disease to cancer as the leading cause of death in the United States, 2003 to 2015: an observational study. Ann. Intern. Med. 169, 836–844 (2018).

    PubMed  Google Scholar 

  4. Ribatti, D. The concept of immune surveillance against tumors. The first theories. Oncotarget 8, 7175–7180 (2017).

    PubMed  Google Scholar 

  5. Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004). This review (ref. 5) describes the interactions between a tumor and the immune system that govern tumor progression or clearance. This framework is important for understanding how tumors respond to immunological pressure.

    CAS  PubMed  Google Scholar 

  6. Gong, J., Chehrazi-Raffle, A., Reddi, S. & Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J. Immunother. Cancer 6, 765–2 (2018).

    Google Scholar 

  7. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015). This (ref. 7) was a landmark study highlighting the connection between a tumor’s mutational landscape and response to immune-checkpoint blockade.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012). This study (ref. 9) demonstrated the clinical activity of PD-1 blockade and established PD-L1 expression on tumor cells as a biomarker of response.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gibney, G. T., Weiner, L. M. & Atkins, M. B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17, e542–e551 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao, J. et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat. Med. 25, 462–469 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Veglia, F., Perego, M. & Gabrilovich, D. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19, 108–119 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang, H. et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat. Med. 22, 851–860 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lim, M., Xia, Y., Bettegowda, C. & Weller, M. Current state of immunotherapy for glioblastoma. Nat. Rev. Clin. Oncol. 15, 422–442 (2018).

    CAS  PubMed  Google Scholar 

  17. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. Weller, M. et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 18, 1373–1385 (2017).

    CAS  PubMed  Google Scholar 

  19. Omuro, A. et al. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143. Neuro-oncol. 20, 674–686 (2018).

    CAS  PubMed  Google Scholar 

  20. Gettinger, S. N. et al. Clinical features and management of acquired resistance to PD-1 axis inhibitors in 26 patients with advanced non-small cell lung cancer. J. Thorac. Oncol. 13, 831–839 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Comiskey, M. C., Dallos, M. C. & Drake, C. G. Immunotherapy in prostate cancer: teaching an old dog new tricks. Curr. Oncol. Rep. 20, 75 (2018).

    PubMed  Google Scholar 

  22. Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803–820 (2016).

    PubMed  Google Scholar 

  23. Ostrom, Q.T., Gittleman, H., Stetson, L., Virk, S.M. & Barnholtz-Sloan, J.S. in Current Understanding and Treatment of Gliomas Vol. 163, pp. 1–14 (Springer International Publishing, 2014).

  24. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005). This trial (ref. 24) established the current standard of care for patients with glioblastoma.

    CAS  PubMed  Google Scholar 

  25. Verhaak, R. G. W. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Romo, C. G. et al. Widely metastatic IDH1-mutant glioblastoma with oligodendroglial features and atypical molecular findings: a case report and review of current challenges in molecular diagnostics. Diagn. Pathol. 14, 16 (2019).

    PubMed  PubMed Central  Google Scholar 

  27. Darmanis, S. et al. Single-cell RNA-Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Reports 21, 1399–1410 (2017).

    CAS  PubMed  Google Scholar 

  28. Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    CAS  PubMed  Google Scholar 

  30. Cheng, L. et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153, 139–152 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schäfer, N. et al. Longitudinal heterogeneity in glioblastoma: moving targets in recurrent versus primary tumors. J. Transl. Med. 17, 96 (2019).

    PubMed  PubMed Central  Google Scholar 

  32. Li, A. et al. Surface biotinylation of cytotoxic T lymphocytes for in vivo tracking of tumor immunotherapy in murine models. Cancer Immunol. Immunother. 65, 1545–1554 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984-2 (2017).

    Google Scholar 

  34. Memarnejadian, A. et al. PD-1 blockade promotes epitope spreading in anticancer CD8+ T cell responses by preventing fratricidal death of subdominant clones to relieve immunodomination. J. Immunol. 199, 3348–3359 (2017).

    CAS  PubMed  Google Scholar 

  35. Mathios, D. et al. Anti-PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM. Sci. Transl. Med. 8, 370ra180 (2016). This study (ref. 35) demonstrated that systemic temozolomide induced immunosuppression that prevented the effectiveness of PD-1 blockade in a preclinical model.

    PubMed  PubMed Central  Google Scholar 

  36. McGranahan, T., Therkelsen, K. E., Ahmad, S. & Nagpal, S. Current state of immunotherapy for treatment of glioblastoma. Curr. Treat. Options Oncol. 20, 24 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. Hung, A. L. et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. OncoImmunology 7, e1466769 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Kim, J. E. et al. Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in regression of murine gliomas. Clin. Cancer Res. 23, 124–136 (2017).

    CAS  PubMed  Google Scholar 

  39. Zeng, J. et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int. J. Radiat. Oncol. 86, 343–349 (2013). This study (ref. 39) was the first to show activity of PD-1 blockade in a glioma model.

    CAS  Google Scholar 

  40. Wu, A. et al. Combination anti-CXCR4 and anti-PD-1 immunotherapy provides survival benefit in glioblastoma through immune cell modulation of tumor microenvironment. J. Neurooncol. 13, 293 (2019).

    Google Scholar 

  41. Jackson, C. M. & Lim, M. Immunotherapy for glioblastoma: playing chess, not checkers. Clin. Cancer Res. 24, 4059–4061 (2018).

    CAS  PubMed  Google Scholar 

  42. Cloughesy, T. F. et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 25, 477–486 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schalper, K. A. et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat. Med. 25, 470–476 (2019).

    CAS  PubMed  Google Scholar 

  44. Bauer, H.-C., Krizbai, I. A., Bauer, H. & Traweger, A. “You Shall Not Pass”—tight junctions of the blood brain barrier. Front. Neurosci. 8, 392 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Spector, R. Nutrient transport systems in brain: 40 years of progress. J. Neurochem. 111, 315–320 (2009).

    CAS  PubMed  Google Scholar 

  46. Coureuil, M., Lécuyer, H., Bourdoulous, S. & Nassif, X. A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat. Rev. Microbiol. 15, 149–159 (2017).

    CAS  PubMed  Google Scholar 

  47. Jackson, C. M., Lim, M. & Drake, C. G. Immunotherapy for brain cancer: recent progress and future promise. Clin. Cancer Res. 20, 3651–3659 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Hutter, G. et al. Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma. Proc. Natl Acad. Sci. USA 116, 997–1006 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Salter, M. W. & Stevens, B. Microglia emerge as central players in brain disease. Nat. Med. 23, 1018–1027 (2017).

    CAS  PubMed  Google Scholar 

  50. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    CAS  PubMed  Google Scholar 

  51. Tang, Y. & Le, W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol. 53, 1181–1194 (2016).

    CAS  PubMed  Google Scholar 

  52. Ransohoff, R. M. & Cardona, A. E. The myeloid cells of the central nervous system parenchyma. Nature 468, 253–262 (2010).

    CAS  PubMed  Google Scholar 

  53. Brabb, T. et al. In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity. J. Exp. Med. 192, 871–880 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Na, S.-Y. et al. Oligodendrocytes enforce immune tolerance of the uninfected brain by purging the peripheral repertoire of autoreactive CD8+ T cells. Immunity 37, 134–146 (2012).

    CAS  PubMed  Google Scholar 

  55. Klein, R. S. et al. IFN-inducible protein 10/CXC chemokine ligand 10-independent induction of experimental autoimmune encephalomyelitis. J. Immunol. 172, 550–559 (2004).

    CAS  PubMed  Google Scholar 

  56. Sandrone, S., Moreno-Zambrano, D., Kipnis, J. & van Gijn, J. A. (delayed) history of the brain lymphatic system. Nat. Med. 25, 538–540 (2019).

    CAS  PubMed  Google Scholar 

  57. Cserr, H. F., Harling-Berg, C. J. & Knopf, P. M. Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 2, 269–276 (1992).

    CAS  PubMed  Google Scholar 

  58. Laman, J. D. & Weller, R. O. Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J. Neuroimmune Pharmacol. 8, 840–856 (2013).

    PubMed  PubMed Central  Google Scholar 

  59. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015). This study (ref. 59) described lymphatic channels paralleling the dural venous sinuses as the major route of antigen egress from the CNS.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Da Mesquita, S. et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560, 185–191 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. Da Mesquita, S., Fu, Z. & Kipnis, J. The meningeal lymphatic system: a new player in neurophysiology. Neuron 100, 375–388 (2018).

    PubMed  PubMed Central  Google Scholar 

  62. Han, S. et al. Tumour-infiltrating CD4+ and CD8+ lymphocytes as predictors of clinical outcome in glioma. Br. J. Cancer 110, 2560–2568 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bouffet, E. et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J. Clin. Oncol. 34, 2206–2211 (2016).

    CAS  PubMed  Google Scholar 

  64. Mitchell, D. A. et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519, 366–369 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Weiss, T., Weller, M., Guckenberger, M., Sentman, C. L. & Roth, P. NKG2D-based CAR T cells and radiotherapy exert synergistic efficacy in glioblastoma. Cancer Res. 78, 1031–1043 (2018).

    CAS  PubMed  Google Scholar 

  66. Tomaszewski, W., Sanchez-Perez, L., Gajewski, T.F. & Sampson, J.H. Brain tumor microenvironment and host state: implications for immunotherapy. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-18-1627 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Jackson, C. M. et al. Systemic tolerance mediated by melanoma brain tumors is reversible by radiotherapy and vaccination. Clin. Cancer Res. 22, 1161–1172 (2016). This study (ref. 67) showed that tumor location is an independent mediator of systemic immunosuppression through multiple mechanisms, including deletion and tolerance of tumor antigen-directed T cells.

    CAS  PubMed  Google Scholar 

  68. Chongsathidkiet, P. et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat. Med. 24, 1459–1468 (2018). This study (ref. 68) addressed the long-standing question of how GBMs induce lymphopenia by demonstrating that T cells are sequestered in the bone marrow of patients with GBM and animals with brain tumors of other pathologies.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. McLendon, R. et al. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

    CAS  Google Scholar 

  71. Qazi, M. A. et al. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann. Oncol. 28, 1448–1456 (2017).

    CAS  PubMed  Google Scholar 

  72. Wang, Q. et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32, 42–56.e6 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Sottoriva, A. et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc. Natl Acad. Sci. USA 110, 4009–4014 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016). This study (ref. 74) found that high-quality clonal neoantigens are critical for response to immune checkpoint blockade.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Łuksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551, 517–520 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sampson, J. H. et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 28, 4722–4729 (2010).

    PubMed  PubMed Central  Google Scholar 

  79. Wood, M. D., Reis, G. F., Reuss, D. E. & Phillips, J. J. Protein analysis of glioblastoma primary and posttreatment pairs suggests a mesenchymal shift at recurrence. J. Neuropathol. Exp. Neurol. 75, 925–935 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Liau, L. M. et al. First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J. Transl. Med. 16, v1–v2 (2018).

    Google Scholar 

  81. Danilova, L. et al. The mutation-associated neoantigen functional expansion of specific T cells (MANAFEST) assay: a sensitive platform for monitoring antitumor immunity. Cancer Immunol. Res. 6, 888–899 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).

    CAS  PubMed  Google Scholar 

  83. Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

    CAS  PubMed  Google Scholar 

  84. Desjardins, A. et al. Recurrent glioblastoma treated with recombinant poliovirus. N. Engl. J. Med. 379, 150–161 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lang, F. F. et al. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J. Clin. Oncol. 36, 1419–1427 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cloughesy, T. F. et al. Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC. Neuro-oncol. 20, 1383–1392 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Brown, M. C. et al. Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen–specific CTLs. Sci. Transl. Med. 9, eaan4220-2 (2017). This study (ref. 87) demonstrated that treatment with an oncolytic poliovirus reprograms DCs, releases damage- or pathogen-associated molecular patterns, and generates sustained cytotoxic responses.

    Google Scholar 

  88. Grossman, S. A. et al. Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin. Cancer Res. 17, 5473–5480 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Maxwell, R. et al. Contrasting impact of corticosteroids on anti-PD-1 immunotherapy efficacy for tumor histologies located within or outside the central nervous system. OncoImmunology 7, e1500108 (2018).

    PubMed  PubMed Central  Google Scholar 

  90. Giles, A. J. et al. Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy. J. Immunother. Cancer 6, 235–232 (2018).

    Google Scholar 

  91. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450–461 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Garcia-Diaz, A. et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Reports 19, 1189–1201 (2017).

    CAS  PubMed  Google Scholar 

  93. Koyama, S. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7, 10501 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Woroniecka, K. et al. T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma. Clin. Cancer Res. 24, 4175–4186 (2018). This study (ref. 94) delineates mechanisms of adaptive resistance in glioblastoma and describes a severe state of exhaustion among tumor-infiltrating T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bauer, C. et al. Prevailing over T cell exhaustion: New developments in the immunotherapy of pancreatic cancer. Cancer Lett. 381, 259–268 (2016).

    CAS  PubMed  Google Scholar 

  96. Johanns, T. M. et al. Immunogenomics of hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov. 6, 1230–1236 (2016).

    PubMed  PubMed Central  Google Scholar 

  97. Chen, Z. & Hambardzumyan, D. Immune microenvironment in glioblastoma subtypes. Front. Immunol. 9, 1004 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Takenaka, M. C. et al. Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nat. Neurosci. 22, 729–740 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Engler, J. R. et al. Increased microglia/macrophage gene expression in a subset of adult and pediatric astrocytomas. PLoS One 7, e43339 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Naeini, K. M. et al. Identifying the mesenchymal molecular subtype of glioblastoma using quantitative volumetric analysis of anatomic magnetic resonance images. Neuro Oncol. 15, 626–634 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Pagès, F. et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391, 2128–2139 (2018).

    PubMed  Google Scholar 

  103. Zhu, X., Fujita, M., Snyder, L. A. & Okada, H. Systemic delivery of neutralizing antibody targeting CCL2 for glioma therapy. J. Neurooncol. 104, 83–92 (2011).

    CAS  PubMed  Google Scholar 

  104. Elmore, M. R. P. et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82, 380–397 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Quail, D. F. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352, aad3018 (2016).

    PubMed  PubMed Central  Google Scholar 

  107. Butowski, N. et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro Oncol. 18, 557–564 (2016).

    PubMed  Google Scholar 

  108. Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3, 133–146 (2003).

    CAS  PubMed  Google Scholar 

  109. Wang, Y. et al. Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment. Biomaterials 112, 153–163 (2017).

    CAS  PubMed  Google Scholar 

  110. Zhu, H. et al. Surgical debulking promotes recruitment of macrophages and triggers glioblastoma phagocytosis in combination with CD47 blocking immunotherapy. Oncotarget 8, 12145–12157 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Zhang, M. et al. Anti-CD47 treatment stimulates phagocytosis of glioblastoma by M1 and M2 polarized macrophages and promotes M1 polarized macrophages in vivo. PLoS One 11, e0153550–e0153552 (2016).

    PubMed  PubMed Central  Google Scholar 

  112. Feng, M. et al. Macrophages eat cancer cells using their own calreticulin as a guide: roles of TLR and Btk. Proc. Natl Acad. Sci. USA 112, 2145–2150 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sosa, R. A., Murphey, C., Ji, N., Cardona, A. E. & Forsthuber, T. G. The kinetics of myelin antigen uptake by myeloid cells in the central nervous system during experimental autoimmune encephalomyelitis. J. Immunol. 191, 5848–5857 (2013).

    CAS  PubMed  Google Scholar 

  114. Karman, J., Ling, C., Sandor, M. & Fabry, Z. Initiation of immune responses in brain is promoted by local dendritic cells. J. Immunol. 173, 2353–2361 (2004).

    CAS  PubMed  Google Scholar 

  115. Ursu, R. et al. Intracerebral injection of CpG oligonucleotide for patients with de novo glioblastoma-A phase II multicentric, randomised study. Eur. J. Cancer 73, 30–37 (2017).

    CAS  PubMed  Google Scholar 

  116. Carpentier, A. et al. Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro-oncol. 12, 401–408 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Garzon-Muvdi, T. et al. Dendritic cell activation enhances anti-PD-1 mediated immunotherapy against glioblastoma. Oncotarget 9, 20681–20697 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. Anagnostou, V. et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 7, 264–276 (2017).

    CAS  PubMed  Google Scholar 

  119. Rosenthal, R. et al. The TRACERx consortium et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 567, 479–485 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Verdegaal, E. M. E. et al. Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature 536, 91–95 (2016).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lim.

Ethics declarations

Competing interests

M.L. receives research support from Arbor, Aegenus, Altor, Accuray, and DNAtrix and serves as a consultant for Tocagen, SQZ Technologies, Bristol–Myers Squibb, Stryker, and Baxter.

Additional information

Peer review information Zoltan Fehervari was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, C.M., Choi, J. & Lim, M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol 20, 1100–1109 (2019). https://doi.org/10.1038/s41590-019-0433-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-019-0433-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer