Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Taming the beast: CRS and ICANS after CAR T-cell therapy for ALL

Abstract

Treatment with CD19 or CD22-targeted chimeric antigen receptor-engineered T (CD19/CD22 CAR-T) cells achieve complete responses in 60–90% of adults and children with refractory or relapsed (R/R) acute lymphoblastic leukemia (ALL). This led to the approval of tisagenlecleucel (Kymriah) by the FDA and several European regulatory agencies in ALL patients up to 25 years of age. Although CAR T-cell therapy is likely to transform the ALL therapeutic landscape, its development and wide dissemination have been impacted by the occurrence of significant toxicities; namely, cytokine release syndrome (CRS) and Immune effector cell-Associated Neurotoxicity Syndrome (ICANS) have been reported at higher rates in ALL patients compared to other B cell malignancies, particularly in the adult population. Here, we review recent data suggesting a significant proportion of ALL patients are at risk of developing severe, sometimes life-threatening, CRS, and ICANS after CD19 and CD22 CAR T-cell therapy. After describing the key clinical and laboratory features of severe CRS and ICANS, we explore the disease and treatment-related factors that may predict the severity of these toxicities. Last, we review strategies under investigation in the prophylactic and therapeutic settings to improve the safety of CAR T-cells for ALL.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Incidences of severe CRS and ICANS after CD19 CAR T-cell therapy for ALL.
Fig. 2: Prediction of dose-outcomes relationships after CD19 CAR T cell therapy (adapted from Hay et al, Blood 2017).

Similar content being viewed by others

References

  1. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–28.

    Article  CAS  PubMed  Google Scholar 

  3. Turtle CJ, Hanafi L-A, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR–T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Investig. 2016;126:2123–38.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pan J, Yang J, Deng B, Zhao X, Zhang X, Lin Y, et al. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients. Leukemia. 2017;31:2587.

    Article  CAS  PubMed  Google Scholar 

  5. Gardner RA, Finney O, Annesley C, Brakke H, Summers C, Leger K, et al. Intent to treat leukemia remission by CD19CAR T cells of defined formulation and dose in children and young adults. Blood 2017; 129: blood-2017-02-769208.

  6. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378:449–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Curran KJ, Margossian S, Kernan NA, Silverman LB, Williams DA, Shukla N, et al. Toxicity and Response following CD19-specific CAR T cells in pediatric/young adult relapsed/refractory B-ALL. Blood 2019. https://doi.org/10.1182/blood.2019001641.

  9. Hay KA, Gauthier J, Hirayama AV, Voutsinas JM, Wu Q, Li D, et al. Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood. 2019;133:1652–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shah BD, Bishop M, Oluwole OO, Logan A, Baer MR, Donnellan W, et al. End of phase I results of ZUMA-3, a phase 1/2 study of KTE-X19, anti-CD19 chimeric antigen receptor (CAR) T cell therapy, in adult patients (pts) with relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL). ASCO Abstr. 2019;37:7006–7006.

    Google Scholar 

  11. Frey NV, Shaw PA, Hexner EO, Pequignot E, Gill S, Luger SM, et al. Optimizing chimeric antigen receptor T-cell therapy for adults with acute lymphoblastic leukemia. J Clin Oncol. 2020;38:415–22.

    Article  CAS  PubMed  Google Scholar 

  12. Gauthier J, Yakoub-Agha I. Chimeric antigen-receptor T-cell therapy for hematological malignancies and solid tumors: Clinical data to date, current limitations and perspectives. Curr Res Transl Med. 2017;65:93–102.

    Article  CAS  PubMed  Google Scholar 

  13. Jacoby E, Bielorai B, Avigdor A, Itzhaki O, Hutt D, Nussboim V, et al. Locally produced CD19 CAR T cells leading to clinical remissions in medullary and extramedullary relapsed acute lymphoblastic leukemia. Am J Hematol. 2018;93:1485–92.

    Article  CAS  PubMed  Google Scholar 

  14. Danylesko I, Chowers G, Shouval R, Besser MJ, Jacoby E, Shimoni A, et al. Treatment with anti CD19 chimeric antigen receptor T cells after antibody-based immunotherapy in adults with acute lymphoblastic leukemia. Curr Res Transl Med. 2019;68:17–22.

    Article  PubMed  Google Scholar 

  15. Gauthier J, Turtle CJ. Insights into cytokine release syndrome and neurotoxicity after CD19-specific CAR-T cell therapy. Curr Res Transl Med. 2018. https://doi.org/10.1016/j.retram.2018.03.003.

  16. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCR$zeta/CD28 receptor. Nat Biotechnol. 2002;20:70–75.

    Article  CAS  PubMed  Google Scholar 

  17. Sommermeyer D, Hudecek M, Kosasih P, Gogishvili T, Maloney D, Turtle C, et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia. 2015;30:492–500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hay KA, Hanafi L-A, Li D, Gust J, Liles CW, Wurfel MM, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor–modified T-cell therapy. Blood. 2017;130:2295–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6:664–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24:739–48.

    Article  CAS  PubMed  Google Scholar 

  21. Giavridis T, Stegen SJ, van der, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24:731–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2018. https://doi.org/10.1016/S1470-2045(18)30864-7.

  23. Sandler R, Tattersall R, Schoemans H, Greco R, Badoglio M, Labopin M, et al. Diagnosis and management of secondary HLH/MAS following HSCT and CAR-T cell therapy in adults; a review of the literature and a survey of practice Within EBMT Centres on Behalf of the Autoimmune Diseases Working Party (ADWP) and Transplant Complications Working Party (TCWP). Front Immunol. 2020;11:524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124:188–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15:361–87.

    Article  PubMed  Google Scholar 

  26. Liu Q, Shepherd BE, Li C, Harrell FE. Modeling continuous response variables using ordinal regression. Stat Med. 2017;36:4316–35.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gust J, Hay KA, Hanafi L-A, Li D, Myerson D, Gonzalez-Cuyar LF, et al. Endothelial activation and blood–brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017;7:1404–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gilbert MJ. 32nd Annual Meeting and Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2017): Part One. J Immunother Cancer. 2017;5:86.

    Article  Google Scholar 

  29. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in b cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6:224ra25–224ra25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Pan J, Niu Q, Deng B, Liu S, Wu T, Gao Z, et al. CD22 CAR T-cell therapy in refractory or relapsed B acute lymphoblastic leukemia. Leukemia. 2019;33:2854–66.

    Article  CAS  PubMed  Google Scholar 

  31. Shah NN, Highfill SL, Shalabi H, Yates B, Jin J, Wolters PL, et al. CD4/CD8 T-Cell Selection Affects Chimeric Antigen Receptor (CAR) T-Cell Potency and Toxicity: Updated Results From a Phase I Anti-CD22 CAR T-Cell Trial. J Clin Oncol. 2020;38:1938–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lichtenstein DA, Steinberg SM, Highfill SL, Yates B, Jin P, Jin J, et al. Abstract 4231: factors predictive of CAR T cell associated hemophagocytic lymphohistiocytosis (HLH). 2020;4231. https://doi.org/10.1158/1538-7445.AM2020-4231.

  33. Wang N, Hu X, Cao W, Li C, Xiao Y, Cao Y, et al. Efficacy and safety of CAR19/22 T-cell cocktail therapy in patients with refractory/relapsed B-cell malignancies. Blood. 2020;135:17–27.

    Article  PubMed  Google Scholar 

  34. Gauthier J, Yuan Y, Thall P. Bayesian Phase 1/2 trial designs and cellular immunotherapies: a practical primer. Cell Gene Therapy Insights 2019.https://insights.bio/cell-and-gene-therapy-insights/journal/articles/bayesian-phase-1-2-trial-designs-and-cellular-immunotherapies-a-practical-primer/.

  35. Gauthier J, Bezerra E, Hirayama AV, Pender BS, Vakil A, Steinmetz RN, et al. Repeat Infusions of CD19 CAR-T cells: factors associated with response, CAR-T cell in vivo expansion, and progression-free survival. Biol Blood Marrow Transl. 2020;26:S267–S268.

    Article  Google Scholar 

  36. Gauthier J, Hirayama AV, Purushe J, Hay KA, Lymp J, Li DH, et al. Feasibility and efficacy of CD19-targeted CAR-T cells with concurrent ibrutinib for CLL after ibrutinib failure. Blood 2020. 10.1182/blood.2019002936.

  37. Long M, Beckwith K, Do P, Mundy BL, Gordon A, Lehman AM, et al. Ibrutinib treatment improves T cell number and function in CLL patients. J Clin Investig. 2017;127:3052–64.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fraietta JA, Beckwith KA, Patel PR, Ruella M, Zheng Z, Barrett DM, et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood. 2016;127:1117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ruella M, Kenderian S, Shestova O, Klichinsky M, Melenhorst J, Wasik M, et al. Kinase inhibitor ibrutinib to prevent cytokine-release syndrome after anti-CD19 chimeric antigen receptor T cells for B-cell neoplasms. Leukemia. 2017;31:246.

    Article  CAS  PubMed  Google Scholar 

  40. Locke FL, Neelapu SS, Bartlett NL, Lekakis LJ, Jacobson CA, Braunschweig I, et al. Preliminary Results of Prophylactic Tocilizumab after Axicabtageneciloleucel (axi-cel; KTE-C19) Treatment for Patients with Refractory,Aggressive Non-Hodgkin Lymphoma (NHL). ASH Abstr. 2017;130:1547–1547.

    Google Scholar 

  41. Nellan A, McCully CM, Garcia R, Jayaprakash N, Widemann BC, Lee DW, et al. Improved CNS exposure to tocilizumab after cerebrospinal fluid compared to intravenous administration in rhesus macaques. Blood. 2018;132:662–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gardner RA, Ceppi F, Rivers J, Annesley C, Summers C, Taraseviciute A, et al. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy. Blood. 2019;134:2149–58.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kadauke S, Maude S, Gladney W, Motley L, Shenoy V, Callahan C, et al. Early administration of tocilizumab (Toci) for the prevention of grade 4 cytokine release syndrome (CRS) after CD19-directed CAR T-cell therapy (CTL019). Cytotherapy. 2019;21:e2–e3.

    Article  Google Scholar 

  44. Porter D, Frey N, Wood PA, Weng Y, Grupp SA. Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. J Hematol Oncol. 2018;11:35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Myers RM, Kadauke S, Li Y, Callahan CA, Gladney W, Fitzgerald JC, et al. Risk-Adapted Preemptive Tocilizumab Decreases Severe Cytokine Release Syndrome (CRS) after CTL019 CD19-Targeted Chimeric Antigen Receptor (CAR) T-Cell Therapy for Pediatric B-Cell Acute Lymphoblastic Leukemia (B-ALL). ASTCT Abstr. 2020;26:S39.

    Google Scholar 

  46. Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. New Engl J Med. 2020;382:1331–42.

    Article  CAS  PubMed  Google Scholar 

  47. Wang M, Jain P, Chi TL, Chen SE, Heimberger A, Weathers S-P, et al. Management of a patient with mantle cell lymphoma who developed severe neurotoxicity after chimeric antigen receptor T-cell therapy in ZUMA-2. J Immunother Cancer 2020;8:e001114.

  48. Garfall AL, Lancaster E, Stadtmauer EA, Lacey SF, Dengel K, Ambrose DE, et al. Posterior Reversible Encephalopathy Syndrome (PRES) after Infusion of Anti-Bcma CAR T Cells (CART-BCMA) for Multiple Myeloma: Successful Treatment with Cyclophosphamide. Blood. 2016;128:5702.

    Article  Google Scholar 

  49. Shah NN, Johnson BD, Fenske TS, Raj RV, Hari P. Intrathecal chemotherapy for management of steroid-refractory CAR T-cell–associated neurotoxicity syndrome. Blood Adv. 2020;4:2119–22.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yucebay F, Maakaron J, Grana A, Jaglowski S, Roddy J. Intrathecal chemotherapy: an alternative treatment strategy to prolonged corticosteroids for severe CAR T associated neurotoxicity. ASTCT Abstr. 2020;26:S312.

    Google Scholar 

  51. Strati P, Ahmed S, Kebriaei P, Nastoupil LJ, Claussen CM, Watson G, et al. Clinical efficacy of anakinra to mitigate CAR T-cell therapy–associated toxicity in large B-cell lymphoma. Blood Adv. 2020;4:3123–7.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hill JA, Li D, Hay KA, Green ML, Cherian S, Chen X, et al. Infectious complications of CD19-targeted chimeric antigen receptor–modified T-cell immunotherapy. Blood. 2018;131:121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, Brudno JN, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transpl. 2019;25:625–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.G. acknowledges the FHCRC/UW Cancer Consortium Cancer Center Support Grant Clinical Scholar Support (NCI / P30 CA015704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan Gauthier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheth, V.S., Gauthier, J. Taming the beast: CRS and ICANS after CAR T-cell therapy for ALL. Bone Marrow Transplant 56, 552–566 (2021). https://doi.org/10.1038/s41409-020-01134-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-020-01134-4

This article is cited by

Search

Quick links