Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FMNL1 mediates nasopharyngeal carcinoma cell aggressiveness by epigenetically upregulating MTA1

A Correction to this article was published on 25 March 2021

This article has been updated

Abstract

It has been suggested that formin-like protein 1 (FMNL1) plays an important role in the pathogenic process of several hematopoietic malignancies. In this study, we performed a series of in vivo and in vitro assays to elucidate the biological functions of FMNL1 and underlying mechanisms in human nasopharyngeal carcinoma (NPC) pathogenesis. Herein, we report that high expression of FMNL1 in NPC is positively associated with an aggressive disease and/or poor patient survival. Ectopic overexpression of FMNL1 in NPC cells substantially promoted cell invadopodia formation, epithelial-mesenchymal transition (EMT) and invasiveness, whereas depletion of FMNL1 potently suppressed NPC cells invadopodia formation, EMT, and invasive/metastatic capacities. We further show that FMNL1 could enhance NPC cell aggressiveness by increasing a key downstream target, the metastasis-associated protein 1 (MTA1) gene. Importantly, ectopic overexpression of FMNL1 in NPC cells markedly improved the binding of HDAC1 with Profilin2 in the cytoplasm and suppressed the enrichment of HDAC1 on the promoter of MTA1 and thereby, leading to an increased MTA1 transcription and expression. Furthermore, in addition to the amplification of FMNL1 gene, decreased level of miR-16 in NPCs is another critical mechanism to upregulate FMNL1 expression. These results, collectively, provide first-line of evidences that high expression of FMNL1, resulted from decreased miR-16 and/or MTA1 amplification, has a potent oncogenic role to drive the development and aggressive process of NPC by upregulating MTA1, and FMNL1 might be employed as a new prognostic biomarker and therapeutic target for human NPC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Wee JT, Ha TC, Loong SL, Qian CN. Is nasopharyngeal cancer really a “Cantonese cancer”? Chin J Cancer. 2010;29:517–26.

    Article  CAS  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  Google Scholar 

  3. Zhang LF, Li YH, Xie SH, Ling W, Chen SH, Liu Q, et al. Incidence trend of nasopharyngeal carcinoma from 1987 to 2011 in Sihui County, Guangdong Province, South China: an age-period-cohort analysis. Chin J Cancer. 2015;34:350–7.

    CAS  PubMed  Google Scholar 

  4. Fandi A, Altun M, Azli N, Armand JP, Cvitkovic E. Nasopharyngeal cancer: epidemiology, staging, and treatment. Semin Oncol. 1994;21:382–97.

    CAS  PubMed  Google Scholar 

  5. Wei WI, Mok VW. The management of neck metastases in nasopharyngeal cancer. Curr Opin Otolaryngol Head Neck Surg. 2007;15:99–102.

    Article  Google Scholar 

  6. Young KG, Copeland JW. Formins in cell signaling. Biochim Biophys Acta. 2010;1803:183–90.

    Article  CAS  Google Scholar 

  7. Goode BL, Eck MJ. Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem. 2007;76:593–627.

    Article  CAS  Google Scholar 

  8. Chesarone MA, DuPage AG, Goode BL. Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol. 2010;11:62–74.

    Article  CAS  Google Scholar 

  9. Kuhn S, Geyer M. Formins as effector proteins of Rho GTPases. Small GTPases. 2014;5:e29513.

    Article  Google Scholar 

  10. Higgs HN. Formin proteins: a domain-based approach. Trends Biochem Sci. 2005;30:342–53.

    Article  CAS  Google Scholar 

  11. Gomez TS, Kumar K, Medeiros RB, Shimizu Y, Leibson PJ, Billadeau DD. Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse. Immunity. 2007;26:177–90.

    Article  CAS  Google Scholar 

  12. Favaro PM, de Souza Medina S, Traina F, Basseres DS, Costa FF, Saad ST. Human leukocyte formin: a novel protein expressed in lymphoid malignancies and associated with Akt. Biochem Biophys Res Commun. 2003;311:365–71.

    Article  CAS  Google Scholar 

  13. Schuster IG, Busch DH, Eppinger E, Kremmer E, Milosevic S, Hennard C, et al. Allorestricted T cells with specificity for the FMNL1-derived peptide PP2 have potent antitumor activity against hematologic and other malignancies. Blood. 2007;110:2931–9.

    Article  CAS  Google Scholar 

  14. Favaro PM, Traina F, Vassallo J, Brousset P, Delsol G, Costa FF, et al. High expression of FMNL1 protein in T non-Hodgkin’s lymphomas. Leukemia Res. 2006;30:735–8.

    Article  CAS  Google Scholar 

  15. Favaro P, Traina F, Machado-Neto JA, Lazarini M, Lopes MR, Pereira JK, et al. FMNL1 promotes proliferation and migration of leukemia cells. J Leukoc Biol. 2013;94:503–12.

    Article  CAS  Google Scholar 

  16. Toh Y, Nicolson GL. The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clin Exp Metastasis. 2009;26:215–27.

    Article  CAS  Google Scholar 

  17. Bowden ET, Onikoyi E, Slack R, Myoui A, Yoneda T, Yamada KM, et al. Co-localization of cortactin and phosphotyrosine identifies active invadopodia in human breast cancer cells. Exp Cell Res. 2006;312:1240–53.

    Article  CAS  Google Scholar 

  18. Webb BA, Jia L, Eves R, Mak AS. Dissecting the functional domain requirements of cortactin in invadopodia formation. Eur J Cell Biol. 2007;86:189–206.

    Article  CAS  Google Scholar 

  19. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28:15–33.

    Article  Google Scholar 

  20. Luger K, Richmond TJ. The histone tails of the nucleosome. Curr Opin Genet Dev. 1998;8:140–6.

    Article  CAS  Google Scholar 

  21. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell. 2009;138:1019–31.

    Article  CAS  Google Scholar 

  22. Tang YN, Ding WQ, Guo XJ, Yuan XW, Wang DM, Song JG. Epigenetic regulation of Smad2 and Smad3 by profilin-2 promotes lung cancer growth and metastasis. Nat Commun. 2015;6:8230.

    Article  Google Scholar 

  23. Stark GR, Debatisse M, Giulotto E, Wahl GM. Recent progress in understanding mechanisms of mammalian DNA amplification. Cell. 1989;57:901–8.

    Article  CAS  Google Scholar 

  24. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  Google Scholar 

  25. Zheng F, Liao YJ, Cai MY, Liu TH, Chen SP, Wu PH, et al. Systemic delivery of microRNA-101 potently inhibits hepatocellular carcinoma in vivo by repressing multiple targets. PLoS Genet. 2015;11:e1004873.

    Article  Google Scholar 

  26. Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell. 2004;14:787–99.

    Article  CAS  Google Scholar 

  27. Liu N, Chen NY, Cui RX, Li WF, Li Y, Wei RR, et al. Prognostic value of a microRNA signature in nasopharyngeal carcinoma: a microRNA expression analysis. Lancet Oncol. 2012;13:633–41.

    Article  CAS  Google Scholar 

  28. Mersich AT, Miller MR, Chkourko H, Blystone SD. The formin FRL1 (FMNL1) is an essential component of macrophage podosomes. Cytoskeleton. 2010;67:573–85.

    Article  CAS  Google Scholar 

  29. Gardberg M, Heuser VD, Iljin K, Kampf C, Uhlen M, Carpen O. Characterization of leukocyte formin FMNL1 expression in human tissues. J Histochem Cytochem. 2014;62:460–70.

    Article  Google Scholar 

  30. Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, et al. The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut. 2012;61:278–89.

    Article  CAS  Google Scholar 

  31. Zhu W, Cai MY, Tong ZT, Dong SS, Mai SJ, Liao YJ, et al. Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through C-myc to induce epithelial-mesenchymal transition. Gut. 2012;61:562–75.

    Article  CAS  Google Scholar 

  32. Kumar R, Wang RA, Bagheri-Yarmand R. Emerging roles of MTA family members in human cancers. Semin Oncol. 2003;30:30–37.

    Article  CAS  Google Scholar 

  33. Pakala SB, Singh K, Reddy SD, Ohshiro K, Li DQ, Mishra L, et al. TGF-beta1 signaling targets metastasis-associated protein 1, a new effector in epithelial cells. Oncogene. 2011;30:2230–41.

    Article  CAS  Google Scholar 

  34. Marzook H, Deivendran S, Kumar R, Pillai MR. Role of MTA1 in head and neck cancers. Cancer Metastasis Rev. 2014;33:953–64.

    Article  CAS  Google Scholar 

  35. Song Q, Li Y, Zheng X, Fang Y, Chao Y, Yao K, et al. MTA1 contributes to actin cytoskeleton reorganization and metastasis of nasopharyngeal carcinoma by modulating Rho GTPases and Hedgehog signaling. Int J Biochem Cell Biol. 2013;45:1439–46.

    Article  CAS  Google Scholar 

  36. Song Q, Zhang H, Wang M, Song W, Ying M, Fang Y, et al. MTA1 promotes nasopharyngeal carcinoma growth in vitro and in vivo. J Exp Clin Cancer Res. 2013;32:54.

    Article  CAS  Google Scholar 

  37. Winter M, Moser MA, Meunier D, Fischer C, Machat G, Mattes K, et al. Divergent roles of HDAC1 and HDAC2 in the regulation of epidermal development and tumorigenesis. EMBO J. 2013;32:3176–91.

    Article  CAS  Google Scholar 

  38. He S, Khan DH, Winter S, Seiser C, Davie JR. Dynamic distribution of HDAC1 and HDAC2 during mitosis: association with F-actin. J Cell Physiol. 2013;228:1525–35.

    Article  CAS  Google Scholar 

  39. Li JS, Ying JM, Wang XW, Wang ZH, Tao Q, Li LL. Promoter methylation of tumor suppressor genes in esophageal squamous cell carcinoma. Chin J Cancer. 2013;32:3–11.

    Article  CAS  Google Scholar 

  40. West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014;124:30–39.

    Article  CAS  Google Scholar 

  41. Tong ZT, Cai MY, Wang XG, Kong LL, Mai SJ, Liu YH, et al. EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co-repressor complex with HDAC1/HDAC2 and Snail to inhibit E-cadherin. Oncogene. 2012;31:583–94.

    Article  CAS  Google Scholar 

  42. Liu L, Dai Y, Chen J, Zeng T, Li Y, Chen L, et al. Maelstrom promotes hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition by way of Akt/GSK-3beta/Snail signaling. Hepatology. 2014;59:531–43.

    Article  CAS  Google Scholar 

  43. Qian CN, Berghuis B, Tsarfaty G, Bruch M, Kort EJ, Ditlev J, et al. Preparing the “soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res. 2006;66:10365–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (No. 2017YFC1309001), the Nature Science Foundation of China (No. 81572359, 81572848, 81702681, and 81730072) and Open Project of State Key Laboratory of Respiratory Disease of China (No. SKLRD2016OP004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WH., Cai, MY., Zhang, JX. et al. FMNL1 mediates nasopharyngeal carcinoma cell aggressiveness by epigenetically upregulating MTA1. Oncogene 37, 6243–6258 (2018). https://doi.org/10.1038/s41388-018-0351-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0351-8

This article is cited by

Search

Quick links