Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Clinical Research

Polymorphisms of the androgen transporting gene SLCO2B1 may influence the castration resistance of prostate cancer and the racial differences in response to androgen deprivation

Abstract

Background:

Organic anion-transporting polypeptides (OATPs) encoded by SLCO mediate the cellular uptake of many compounds, including androgens. SLCO1B3 and SLCO2B1 are polymorphic, and single-nucleotide polymorphisms of those genes alter androgen transport efficiency. We aimed to investigate the association between genetic variations in SLCOs and the progression to castration-resistant prostate cancer (CRPC).

Methods:

We studied the progression to CRPC for the SLCO1B3 rs4149117 and SLCO2B1 rs12422149 genotypes in 87 prostate cancer patients who received androgen deprivation therapy (ADT). Data were analyzed using the χ2 test, Kaplan–Meier survival analysis and Cox proportional hazard model.

Results:

SLCO3B1 genotypes were not significantly associated with the time to progression (TTP); however, patients carrying the active androgen transport SLCO2B1 genotype (GG allele) exhibited a median TTP that was 7 months shorter than that of patients with impaired androgen-transporting activity SLCO2B1 polymorphisms (GA/AA alleles) (10.0 vs 17.0 months, P=0.004). Active androgen transport genotypes of SLCO2B1 (GG allele) occurred more frequently in African and Caucasian populations than in Japanese and Han Chinese populations (P<0.001).

Conclusions:

These data suggest that SLCO2B1 rs12422149 variants could provide prognostic value for prostate cancer patients treated with ADT and influence ethnic differences in response to ADT. Active androgen import may be one of the underlying mechanisms of resistance to ADT, and androgen-transporting systems could provide novel biomarkers and targets for CRPC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN et al. TAX 327 Investigators. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004; 351: 1502–1512.

    Article  CAS  Google Scholar 

  2. Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, Taplin ME et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 2004; 35: 1513–1520.

    Article  Google Scholar 

  3. de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011; 364: 1995–2005.

    Article  CAS  Google Scholar 

  4. de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I et al. TROPIC Investigators. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 2010; 376: 1147–1154.

    Article  CAS  Google Scholar 

  5. Golshayan AR, Antonarakis ES . Enzalutamide: an evidence-based review of its use in the treatment of prostate cancer. Core Evid 2013; 8: 27–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hafeez S, Parker C . Radium-223 for the treatment of prostate cancer. Expert Opin Investig Drugs 2013; 22: 379–387.

    Article  CAS  Google Scholar 

  7. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363: 411–422.

    CAS  PubMed  Google Scholar 

  8. Attar RM, Takimoto CH, Gottardis MM . Castration-resistant prostate cancer: locking up the molecular escape routes. Clin Cancer Res 2009; 15: 3251–3255.

    Article  CAS  Google Scholar 

  9. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004; 10: 33–39.

    Article  Google Scholar 

  10. Fujimoto N, Miyamoto H, Mizokami A, Harada S, Nomura M, Ueta Y et al. Prostate cancer cells increase androgen sensitivity by increase in nuclear androgen receptor and androgen receptor coactivators; a possible mechanism of hormone-resistance of prostate cancer cells. Cancer Invest 2007; 25: 32–37.

    Article  CAS  Google Scholar 

  11. Foley R, Marignol L, Keane JP, Lynch TH, Hollywood D . Androgen hypersensitivity in prostate cancer: molecular perspectives on androgen deprivation therapy strategies. Prostate 2011; 71: 550–557.

    Article  CAS  Google Scholar 

  12. König J, Seithel A, Gradhand U, Fromm MF . Pharmacogenomics of human OATP transporters. Naunyn Schmiedebergs Arch Pharmacol 2006; 372: 432–443.

    Article  Google Scholar 

  13. Hamada A, Sissung T, Price DK, Danesi R, Chau CH, Sharifi N et al. Effect of SLCO1B3 haplotype on testosterone transport and clinical outcome in Caucasian patients with androgen-independent prostatic cancer. Clin Cancer Res 2008; 14: 3312–3318.

    Article  CAS  Google Scholar 

  14. Yang M, Xie W, Mostaghel E, Nakabayashi M, Werner L, Sun T et al. SLCO2B1 and SLCO1B3 may determine time to progression for patients receiving androgen deprivation therapy for prostate cancer. J Clin Oncol 2011; 29: 2565–2573.

    Article  CAS  Google Scholar 

  15. Pressler H, Sissung TM, Venzon D, Price DK, Figg WD . Expression of OATP family members in hormone-related cancers: potential markers of progression. PLoS One 2011; 6: e20372.

    Article  CAS  Google Scholar 

  16. Wright JL, Kwon EM, Ostrander EA, Montgomery RB, Lin DW, Vessella R et al. Expression of SLCO transport genes in castration-resistant prostate cancer and impact of genetic variation in SLCO1B3 and SLCO2B1 on prostate cancer outcomes. Cancer Epidemiol Biomarkers Prev 2011; 20: 619–627.

    Article  CAS  Google Scholar 

  17. Sharifi N, Hamada A, Sissung T, Danesi R, Venzon D, Baum C et al. A polymorphism in a transporter of testosterone is a determinant of androgen independence in prostate cancer. BJU Int 2008; 102: 617–621.

    Article  CAS  Google Scholar 

  18. Fukagai T, Namiki TS, Carlile RG, Yoshida H, Namiki M . Comparison of the clinical outcome after hormonal therapy for prostate cancer between Japanese and Caucasian men. BJU Int 2006; 97: 1190–1193.

    Article  CAS  Google Scholar 

  19. Holmes L Jr, Chan W, Jiang Z, Ward D, Essien EJ, Du XL . Impact of androgen deprivation therapy on racial/ethnic disparities in the survival of older men treated for locoregional prostate cancer. Cancer Control 2009; 16: 176–185.

    Article  Google Scholar 

  20. Tsujimoto M, Hirata S, Dan Y, Ohtani H, Sawada Y . Polymorphisms and linkage disequilibrium of the OATP8 (OATP1B3) gene in Japanese subjects. Drug Metab Pharmacokinet 2006; 21: 165–169.

    Article  Google Scholar 

  21. Smith NF, Marsh S, Scott-Horton TJ, Hamada A, Mielke S, Mross K et al. Variants in the SLCO1B3 gene: interethnic distribution and association with paclitaxel pharmacokinetics. Clin Pharmacol Ther 2007; 81: 76–82.

    Article  CAS  Google Scholar 

  22. Miura M, Satoh S, Inoue K, Kagaya H, Saito M, Inoue T et al. Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol 2007; 63: 1161–1169.

    Article  CAS  Google Scholar 

  23. dbSNP http://www.ncbi.nlm.nih.gov/snp?term.

  24. Laitinen A, Niemi M . Frequencies of single-nucleotide polymorphisms of SLCO1A2, SLCO1B3 and SLCO2B1 genes in a Finnish population. Basic Clin Pharmacol Toxicol 2011; 108: 9–13.

    Article  CAS  Google Scholar 

  25. Taguchi M, Ichida F, Hirono K, Miyawaki T, Yoshimura N, Nakamura T et al. Pharmacokinetics of bosentan in routinely treated Japanese pediatric patients with pulmonary arterial hypertension. Drug Metab Pharmacokinet 2011; 26: 280–287.

    Article  CAS  Google Scholar 

  26. Inatomi H, Katoh T, Kawamoto T, Matsumoto T . NAT2 gene polymorphism as a possible marker for susceptibility to bladder cancer in Japanese. Int J Urol 1999; 6: 446–454.

    Article  CAS  Google Scholar 

  27. Ikuyama T, Hamasaki T, Inatomi H, Katoh T, Muratani T, Matsumoto T . Association of vitamin D receptor gene polymorphism with renal cell carcinoma in Japanese. Endocr J 2002; 49: 433–438.

    Article  CAS  Google Scholar 

  28. Hamasaki T, Inatomi H, Katoh T, Aono H, Ikuyama T, Muratani T et al. N-acetyltransferase-2 gene polymorphism as a possible biomarker for prostate cancer in Japanese men. Int J Urol 2003; 10: 167–173.

    Article  CAS  Google Scholar 

  29. Mottet N, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V et al. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 2011; 59: 572–583.

    Article  Google Scholar 

  30. Cooperberg MR, Hinotsu S, Namiki M, Ito K, Broering J, Carroll PR et al. Risk assessment among prostate cancer patients receiving primary androgen deprivation therapy. J Clin Oncol 2009; 27: 4306–4313.

    Article  Google Scholar 

  31. Scher HI, Sawyers CL . Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 2005; 23: 8253–8261.

    Article  CAS  Google Scholar 

  32. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ . Splicing of a novel androgen receptor resistance. Cancer Res 2008; 68: 5469–5477.

    Article  CAS  Google Scholar 

  33. Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 2009; 69: 2305–2313.

    Article  CAS  Google Scholar 

  34. Steinkamp MP, O'Mahony OA, Brogley M, Rehman H, Lapensee EW, Dhanasekaran S et al. Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res 2009; 69: 4434–4442.

    Article  CAS  Google Scholar 

  35. Shiota M, Yokomizo A, Fujimoto N, Naito S . Androgen receptor cofactors in prostate cancer: potential therapeutic targets of castration-resistant prostate cancer. Curr Cancer Drug Targets 2011; 11: 870–881.

    Article  CAS  Google Scholar 

  36. Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 2006; 66: 2815–2825.

    Article  CAS  Google Scholar 

  37. Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 2008; 68: 4447–4454.

    Article  CAS  Google Scholar 

  38. Cai C, Chen S, Ng P, Bubley GJ, Nelson PS, Mostaghel EA et al. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res 2011; 71: 6503–6513.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms Hisami Aono for her technical assistance in genomic DNA extraction, PCR and DNA sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Fujimoto.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimoto, N., Kubo, T., Inatomi, H. et al. Polymorphisms of the androgen transporting gene SLCO2B1 may influence the castration resistance of prostate cancer and the racial differences in response to androgen deprivation. Prostate Cancer Prostatic Dis 16, 336–340 (2013). https://doi.org/10.1038/pcan.2013.23

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2013.23

Keywords

This article is cited by

Search

Quick links