Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

LncRNA-mediated regulation of cell signaling in cancer

Subjects

Abstract

To date, a large number of long non-coding RNAs (lncRNAs) have been recently discovered through functional genomics studies. Importantly, lncRNAs have been shown, in many cases, to function as master regulators for gene expression and thus, they can play a critical role in various biological functions and disease processes including cancer. Although the lncRNA-mediated gene expression involves various mechanisms, such as regulation of transcription, translation, protein modification, and the formation of RNA–protein or protein–protein complexes, in this review, we discuss the latest developments primarily in important cell signaling pathways regulated by lncRNAs in cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

3′-UTR:

3′-untranslated region

ARE:

AU rich element

DINO:

damage-induced non-coding

EMT:

epithelial–mesenchymal transition

GAS5:

growth arrest-specific 5

GR:

glucocorticoid receptor

GRE:

glucocorticoid response element

hnRNP:

heterogeneous nuclear ribonucleoprotein

lncRNA:

long ncRNA

LED:

lncRNA activator of enhancer domains

LINK-A:

long intergenic non-coding RNA for kinase activation

LINP1:

lncRNA in nonhomologous end joining pathway 1

MALAT1:

metastasis-associated lung adenocarcinoma transcript 1

PRC2:

polycomb repressive complex 2

RTK:

receptor tyrosine kinase

RISC:

RNA-induced silencing complex

SAM:

synergistic activation mediator

TUG1:

taurine-upregulated gene 1.

References

  1. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007; 447: 799–816.

    Article  CAS  PubMed  Google Scholar 

  2. Kapranov P, Willingham AT, Gingeras TR . Genome-wide transcription and the implications for genomic organization. Nat Rev Genet 2007; 8: 413–423.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 2015; 160: 595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nelson BR, Makarewich CA, Anderson DM, Winders BR, Troupes CD, Wu F et al. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 2016; 351: 271–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gibb EA, Brown CJ, Lam WL . The functional role of long non-coding RNA in human carcinomas. Mol Cancer 2011; 10: 38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Esteller M . Non-coding RNAs in human disease. Nat Rev Genet 2011; 12: 861–874.

    Article  CAS  PubMed  Google Scholar 

  7. Fatica A, Bozzoni I . Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 2014; 15: 7–21.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Chen L, Chen B, Li X, Kang J, Fan K et al. Mammalian ncRNA-disease repository: a global view of ncRNA-mediated disease network. Cell Death Dis 2013; 4: e765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilusz JE . Long noncoding RNAs: re-writing dogmas of RNA processing and stability. Biochim Biophys Acta 2016; 1859: 128–138.

    Article  CAS  PubMed  Google Scholar 

  10. Hayes J, Peruzzi PP, Lawler S . MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 2014; 20: 460–469.

    Article  CAS  PubMed  Google Scholar 

  11. Rinn JL, Chang HY . Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81: 145–166.

    Article  CAS  PubMed  Google Scholar 

  12. Bartolomei MS, Zemel S, Tilghman SM . Parental imprinting of the mouse H19 gene. Nature 1991; 351: 153–155.

    Article  CAS  PubMed  Google Scholar 

  13. Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 1992; 71: 527–542.

    Article  CAS  PubMed  Google Scholar 

  14. Blythe AJ, Fox AH, Bond CS . The ins and outs of lncRNA structure: how, why and what comes next? Biochimi Biophys Acta 2016; 1859: 46–58.

    Article  CAS  Google Scholar 

  15. Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M et al. Antisense transcription in the mammalian transcriptome. Science 2005; 309: 1564–1566.

    Article  PubMed  Google Scholar 

  16. Marques AC, Ponting CP . Intergenic lncRNAs and the evolution of gene expression. Curr Opin Genet Dev 2014; 27: 48–53.

    Article  CAS  PubMed  Google Scholar 

  17. Mattick JS, Rinn JL . Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol 2015; 22: 5–7.

    Article  CAS  PubMed  Google Scholar 

  18. Ulitsky I, Bartel DP . lincRNAs: genomics, evolution, and mechanisms. Cell 2013; 154: 26–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mercer TR, Dinger ME, Mattick JS . Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10: 155–159.

    Article  CAS  PubMed  Google Scholar 

  20. Wang KC, Chang HY . Molecular mechanisms of long noncoding RNAs. Mol Cell 2011; 43: 904–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP . Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 2010; 3: ra8.

    PubMed  PubMed Central  Google Scholar 

  22. Baldassarre A, Masotti A . Long non-coding RNAs and p53 regulation. Int J Mol Sci 2012; 13: 16708–16717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meller VH, Joshi SS, Deshpande N . Modulation of chromatin by noncoding RNA. Annu Rev Genet 2015; 49: 673–695.

    Article  CAS  PubMed  Google Scholar 

  24. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464: 1071–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329: 689–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. DeMaria CT, Brewer G . AUF1 binding affinity to A+U-rich elements correlates with rapid mRNA degradation. J Biol Chem 1996; 271: 12179–12184.

    Article  CAS  PubMed  Google Scholar 

  27. Huang J, Zhang A, Ho TT, Zhang Z, Zhou N, Ding X et al. Linc-RoR promotes c-Myc expression through hnRNP I and AUF1. Nucleic Acids Res 2016; 44: 3059–3069.

    Article  CAS  PubMed  Google Scholar 

  28. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ . Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 2008; 40: 1413–1415.

    Article  CAS  PubMed  Google Scholar 

  29. Kashima T, Rao N, David CJ, Manley JL . hnRNP A1 functions with specificity in repression of SMN2 exon 7 splicing. Hum Mol Genet 2007; 16: 3149–3159.

    Article  CAS  PubMed  Google Scholar 

  30. Zarnack K, Konig J, Tajnik M, Martincorena I, Eustermann S, Stevant I et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 2013; 152: 453–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 2010; 39: 925–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Singh R, Gupta SC, Peng WX, Zhou N, Pochampally R, Atfi A et al. Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis. Cell Death Dis 2016; 7: e2262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Z, Zhou N, Huang J, Ho TT, Zhu Z, Qiu Z et al. Regulation of androgen receptor splice variant AR3 by PCGEM1. Oncotarget 2016; 7: 15481–15491.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell 2012; 47: 648–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 2012; 491: 454–457.

    Article  CAS  PubMed  Google Scholar 

  36. Halaby MJ, Yang DQ . p53 translational control: a new facet of p53 regulation and its implication for tumorigenesis and cancer therapeutics. Gene 2007; 395: 1–7.

    Article  CAS  PubMed  Google Scholar 

  37. Grover R, Ray PS, Das S . Polypyrimidine tract binding protein regulates IRES-mediated translation of p53 isoforms. Cell Cycle 2008; 7: 2189–2198.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang A, Zhou N, Huang J, Liu Q, Fukuda K, Ma D et al. The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res 2013; 23: 340–350.

    Article  CAS  PubMed  Google Scholar 

  39. Hirata H, Hinoda Y, Shahryari V, Deng G, Nakajima K, Tabatabai ZL et al. Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Res 2015; 75: 1322–1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Z, Hou P, Fan D, Dong M, Ma M, Li H et al. The degradation of EZH2 mediated by lncRNA ANCR attenuated the invasion and metastasis of breast cancer. Cell Death Differ 2017; 24: 59–71.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang A, Xu M, Mo YY . Role of the lncRNA-p53 regulatory network in cancer. J Mol Cell Biol 2014; 6: 181–191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Schmitt AM, Garcia JT, Hung T, Flynn RA, Shen Y, Qu K et al. An inducible long noncoding RNA amplifies DNA damage signaling. Nat Genet 2016; 48: 1370–1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 2009; 106: 3207–3212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 2013; 25: 69–80.

    Article  CAS  PubMed  Google Scholar 

  45. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 2010; 142: 409–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 2011; 43: 621–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu Q, Huang J, Zhou N, Zhang Z, Zhang A, Lu Z et al. LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res 2013; 41: 4976–4987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jain AK, Xi Y, McCarthy R, Allton K, Akdemir KC, Patel LR et al. LncPRESS1 is a p53-regulated lncRNA that safeguards pluripotency by disrupting SIRT6-mediated de-acetylation of histone H3K56. Mol Cell 2016; 64: 967–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Diaz-Lagares A, Crujeiras AB, Lopez-Serra P, Soler M, Setien F, Goyal A et al. Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer. Proc Natl Acad Sci USA 2016; 113: E7535–E7544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang Y, He Q, Hu Z, Feng Y, Fan L, Tang Z et al. Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol 2016; 23: 522–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Melo CA, Drost J, Wijchers PJ, van de Werken H, de Wit E, Oude Vrielink JA et al. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 2013; 49: 524–535.

    Article  CAS  PubMed  Google Scholar 

  52. Leveille N, Melo CA, Rooijers K, Diaz-Lagares A, Melo SA, Korkmaz G et al. Genome-wide profiling of p53-regulated enhancer RNAs uncovers a subset of enhancers controlled by a lncRNA. Nat Commun 2015; 6: 6520.

    Article  CAS  PubMed  Google Scholar 

  53. Peppicelli S, Bianchini F, Contena C, Tombaccini D, Calorini L . Acidic pH via NF-kappaB favours VEGF-C expression in human melanoma cells. Clin Exp Metastasis 2013; 30: 957–967.

    Article  CAS  PubMed  Google Scholar 

  54. Shi Q, Le X, Wang B, Xiong Q, Abbruzzese JL, Xie K . Regulation of interleukin-8 expression by cellular pH in human pancreatic adenocarcinoma cells. J Interferon Cytokine Res 2000; 20: 1023–1028.

    Article  CAS  PubMed  Google Scholar 

  55. Xu L, Fidler IJ . Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells. Cancer Res 2000; 60: 4610–4616.

    CAS  PubMed  Google Scholar 

  56. Lu T, Stark GR . NF-kappaB: regulation by methylation. Cancer Res 2015; 75: 3692–3695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aggarwal BB . Nuclear factor-kappaB: the enemy within. Cancer Cell 2004; 6: 203–208.

    Article  CAS  PubMed  Google Scholar 

  58. Krawczyk M, Emerson BM . p50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-kappaB complexes. ELife 2014; 3: e01776.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X et al. A cytoplasmic NF-kappaB interacting long noncoding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 2015; 27: 370–381.

    Article  CAS  PubMed  Google Scholar 

  60. Rapicavoli NA, Qu K, Zhang J, Mikhail M, Laberge RM, Chang HY . A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. ELife 2013; 2: e00762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Pearson MJ, Philp AM, Heward JA, Roux BT, Walsh DA, Davis ET et al. Long intergenic noncoding RNAs mediate the human chondrocyte inflammatory response and are differentially expressed in osteoarthritis cartilage. Arthritis Rheumatol 2016; 68: 845–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hu G, Gong AY, Wang Y, Ma S, Chen X, Chen J et al. LincRNA-Cox2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling. J Immunol 2016; 196: 2799–2808.

    Article  CAS  PubMed  Google Scholar 

  63. Ozes AR, Miller DF, Ozes ON, Fang F, Liu Y, Matei D et al. NF-kappaB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. Oncogene 2016; 35: 5350–5361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu H, Liu J, Li W, Liu G, Li Z . LncRNA-HOTAIR promotes TNF-alpha production in cardiomyocytes of LPS-induced sepsis mice by activating NF-kappaB pathway. Biochem Biophys Res Commun 2016; 471: 240–246.

    Article  CAS  PubMed  Google Scholar 

  65. Zhao G, Su Z, Song D, Mao Y, Mao X . The long noncoding RNA MALAT1 regulates the lipopolysaccharide-induced inflammatory response through its interaction with NF-kappaB. FEBS Lett 2016; 590: 2884–2895.

    Article  CAS  PubMed  Google Scholar 

  66. Thorpe LM, Yuzugullu H, Zhao JJ . PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 2015; 15: 7–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Koirala P, Huang J, Ho TT, Wu F, Ding X, Mo YY . LncRNA AK023948 is a positive regulator of AKT. Nat Commun 2017; 8: 14422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Taniguchi CM, Winnay J, Kondo T, Bronson RT, Guimaraes AR, Aleman JO et al. The phosphoinositide 3-kinase regulatory subunit p85alpha can exert tumor suppressor properties through negative regulation of growth factor signaling. Cancer Res 2010; 70: 5305–5315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lin A, Hu Q, Li C, Xing Z, Ma G, Wang C et al. The LINK-A lncRNA interacts with PtdIns(3,4,5)P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat Cell Biol 2017; 19: 238–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Qiao Q, Li H . LncRNA FER1L4 suppresses cancer cell proliferation and cycle by regulating PTEN expression in endometrial carcinoma. Biochem Biophys Res Commun 2016; 478: 507–512.

    Article  CAS  PubMed  Google Scholar 

  71. Pan H, Jiang T, Cheng N, Wang Q, Ren S, Li X et al. Long non-coding RNA BC087858 induces non-T790M mutation acquired resistance to EGFR-TKIs by activating PI3K/AKT and MEK/ERK pathways and EMT in non-small-cell lung cancer. Oncotarget 2016; 7: 49948–49960.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Xu S, Sui S, Zhang J, Bai N, Shi Q, Zhang G et al. Downregulation of long noncoding RNA MALAT1 induces epithelial-to-mesenchymal transition via the PI3K-AKT pathway in breast cancer. Int J Clin Exp Pathol 2015; 8: 4881–4891.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X . MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol 2015; 36: 1477–1486.

    Article  CAS  PubMed  Google Scholar 

  74. Trimarchi T, Bilal E, Ntziachristos P, Fabbri G, Dalla-Favera R, Tsirigos A et al. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell 2014; 158: 593–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Katsushima K, Natsume A, Ohka F, Shinjo K, Hatanaka A, Ichimura N et al. Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat Commun 2016; 7: 13616.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wang Y, Wu P, Lin R, Rong L, Xue Y, Fang Y . LncRNA NALT interaction with NOTCH1 promoted cell proliferation in pediatric T cell acute lymphoblastic leukemia. Sci Rep 2015; 5: 13749.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Huang J, Zhang A, Ho TT, Zhang Z, Zhou N, Ding X et al. Linc-RoR promotes c-Myc expression through hnRNP I and AUF1. Nucleic Acids Res 2015; 44: 3059–3069.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Kawasaki Y, Komiya M, Matsumura K, Negishi L, Suda S, Okuno M et al. MYU, a target lncRNA for Wnt/c-Myc signaling, mediates induction of CDK6 to promote cell cycle progression. Cell Rep 2016; 16: 2554–2564.

    Article  CAS  PubMed  Google Scholar 

  79. Carotenuto P, Fassan M, Pandolfo R, Lampis A, Vicentini C, Cascione L et al. Wnt signalling modulates transcribed-ultraconserved regions in hepatobiliary cancers. Gut 2016, gutjnl-2016-312278; doi: 10.1136/gutjnl-2016-312278.

    Article  PubMed  CAS  Google Scholar 

  80. Lin A, Li C, Xing Z, Hu Q, Liang K, Han L et al. The LINK-A lncRNA activates normoxic HIF1alpha signalling in triple-negative breast cancer. Nat Cell Biol 2016; 18: 213–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tseng YY, Moriarity BS, Gong W, Akiyama R, Tiwari A, Kawakami H et al. PVT1 dependence in cancer with MYC copy-number increase. Nature 2014; 512: 82–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 2003; 22: 8031–8041.

    Article  CAS  PubMed  Google Scholar 

  83. Liu J, Peng WX, Mo YY, Luo D . MALAT1-mediated tumorigenesis. Front Biosci (Landmark Ed) 2017; 22: 66–80.

    Article  CAS  Google Scholar 

  84. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 2011; 29: 742–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Srikantan V, Zou Z, Petrovics G, Xu L, Augustus M, Davis L et al. PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc Natl Acad Sci USA 2000; 97: 12216–12221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Petrovics G, Zhang W, Makarem M, Street JP, Connelly R, Sun L et al. Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene 2004; 23: 605–611.

    Article  CAS  PubMed  Google Scholar 

  87. Fu X, Ravindranath L, Tran N, Petrovics G, Srivastava S . Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1. DNA Cell Biol 2006; 25: 135–141.

    Article  PubMed  Google Scholar 

  88. Huang J, Zhou N, Watabe K, Lu Z, Wu F, Xu M et al. Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis 2014; 5: e1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang Z, Zhu Z, Watabe K, Zhang X, Bai C, Xu M et al. Negative regulation of lncRNA GAS5 by miR-21. Cell Death Differ 2013; 20: 1558–1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant R01 CA154989 (Y-YM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-Y Mo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, WX., Koirala, P. & Mo, YY. LncRNA-mediated regulation of cell signaling in cancer. Oncogene 36, 5661–5667 (2017). https://doi.org/10.1038/onc.2017.184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.184

This article is cited by

Search

Quick links