Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Thrombospondin-4 mediates TGF-β-induced angiogenesis

Abstract

TGF-β is a multifunctional cytokine affecting many cell types and implicated in tissue remodeling processes. Due to its many functions and cell-specific effects, the consequences of TGF-β signaling are process-and stage-dependent, and it is not uncommon that TGF-β exerts distinct and sometimes opposing effects on a disease progression depending on the stage and on the pathological changes associated with the stage. The mechanisms underlying cell- and process-specific effects of TGF-β are poorly understood. We are describing a novel pathway that mediates induction of angiogenesis in response to TGF-β1. We found that in endothelial cells (EC) thrombospondin-4 (TSP-4), a secreted extracellular matrix (ECM) protein, is upregulated in response to TGF-β1 and mediates the effects of TGF-β1 on angiogenesis. Upregulation of TSP-4 does not require the synthesis of new protein, is not caused by decreased secretion of TSP-4, and is mediated by activation of SMAD3. Using Thbs4−/− mice and TSP-4 shRNA, we found that TSP-4 mediated pro-angiogenic functions in cultured EC and angiogenesis in vivo in response to TGF-β1. We observed~3-fold increases in tumor mass and levels of angiogenesis markers in animals injected with TGF-β1, and these effects did not occur in Thbs4−/− animals. Injections of an inhibitor of TGF-β1 signaling SB-431542 also decreased the weights of tumors and cancer angiogenesis. Our results from in vivo angiogenesis models and cultured EC document that TSP-4 mediates upregulation of angiogenesis by TGF-β1. Upregulation of pro-angiogenic TSP-4 and selective effects of TSP-4 on EC may contribute to stimulation of tumor growth by TGF-β despite the inhibition of cancer cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

bFGF:

basic fibroblasts growth factor

DMSO:

dimethyl sulfoxide

ECM:

extracellular matrix

HDMEC:

human dermal microvascular endothelial cells

HUVEC:

human umbilical vein endothelial cells

IP:

intra-peritoneal

KO:

knock-out

MAEC:

mouse aortic endothelial cells

MLEC:

mouse lung endothelial cells

OCT:

OCT embedding cryoembedding Matrix

shRNA:

small hairpin RNA

VSMC:

vascular smooth muscle cells

vWF:

von Willebrand factor

WT:

wild type.

References

  1. Hubmacher D, Apte SS . The biology of the extracellular matrix: novel insights. Curr Opin Rheumatol 2013; 25: 65–70.

    Article  CAS  Google Scholar 

  2. Samarakoon R, Overstreet JM, Higgins PJ . TGF-beta signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cell Signal 2013; 25: 264–268.

    Article  CAS  Google Scholar 

  3. Lan HY, Chung AC . TGF-beta/Smad signaling in kidney disease. Semin Nephrol 2012; 32: 236–243.

    Article  CAS  Google Scholar 

  4. Fernandez IE, Eickelberg O . The impact of TGF-beta on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc 2012; 9: 111–116.

    Article  CAS  Google Scholar 

  5. Weiss A, Attisano L . The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol 2013; 2: 47–63.

    Article  CAS  Google Scholar 

  6. Katz LH, Li Y, Chen JS, Munoz NM, Majumdar A, Chen J et al. Targeting TGF-beta signaling in cancer. Expert Opin Ther Targets 2013; 17: 743–760.

    Article  CAS  Google Scholar 

  7. Toma I, McCaffrey TA . Transforming growth factor-beta and atherosclerosis: interwoven atherogenic and atheroprotective aspects. Cell Tissue Res 2012; 347: 155–175.

    Article  CAS  Google Scholar 

  8. Yang SN, Burch ML, Tannock LR, Evanko S, Osman N, Little PJ . Transforming growth factor-beta regulation of proteoglycan synthesis in vascular smooth muscle: contribution to lipid binding and accelerated atherosclerosis in diabetes. J Diabetes 2010; 2: 233–242.

    Article  CAS  Google Scholar 

  9. Prendes MA, Harris A, Wirostko BM, Gerber AL, Siesky B . The role of transforming growth factor beta in glaucoma and the therapeutic implications. Br J Ophthalmol 2013; 97: 680–686.

    Article  Google Scholar 

  10. Joseph JV, Balasubramaniyan V, Walenkamp A, Kruyt FA . TGF-beta as a therapeutic target in high grade gliomas - promises and challenges. Biochem Pharmacol 2013; 85: 478–485.

    Article  CAS  Google Scholar 

  11. Yanagita M . Inhibitors/antagonists of TGF-beta system in kidney fibrosis. Nephrol Dial Transplant 2012; 27: 3686–3691.

    Article  CAS  Google Scholar 

  12. Perrot CY, Javelaud D, Mauviel A . Overlapping activities of TGF-beta and Hedgehog signaling in cancer: therapeutic targets for cancer treatment. Pharmacol Ther 2013; 137: 183–199.

    Article  CAS  Google Scholar 

  13. Araujo-Jorge TC, Waghabi MC, Bailly S, Feige JJ . The TGF-beta pathway as an emerging target for Chagas disease therapy. Clin Pharmacol Ther 2012; 92: 613–621.

    Article  CAS  Google Scholar 

  14. Dietz HC . TGF-beta in the pathogenesis and prevention of disease: a matter of aneurysmic proportions. J Clin Invest 2010; 120: 403–407.

    Article  CAS  Google Scholar 

  15. Muppala S, Frolova E, Xiao R, Krukovets I, Yoon S, Hoppe G et al. Proangiogenic properties of thrombospondin-4. Arterioscler Thromb Vasc Biol 2015; 35: 1975–1986.

    Article  CAS  Google Scholar 

  16. Cho JY, Lim JY, Cheong JH, Park YY, Yoon SL, Kim SM et al. Gene expression signature-based prognostic risk score in gastric cancer. Clin Cancer Res 2011; 17: 1850–1857.

    Article  CAS  Google Scholar 

  17. D'Errico M, de Rinaldis E, Blasi MF, Viti V, Falchetti M, Calcagnile A et al. Genome-wide expression profile of sporadic gastric cancers with microsatellite instability. Eur J Cancer 2009; 45: 461–469.

    Article  CAS  Google Scholar 

  18. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002; 1: 203–209.

    Article  CAS  Google Scholar 

  19. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 2004; 5: 607–616.

    Article  CAS  Google Scholar 

  20. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486: 346–352.

    Article  CAS  Google Scholar 

  21. Lu X, Wang ZC, Iglehart JD, Zhang X, Richardson AL . Predicting features of breast cancer with gene expression patterns. Breast Cancer Res Treat 2008; 108: 191–201.

    Article  CAS  Google Scholar 

  22. Congote LF, Difalco MR, Gibbs BF . The C-terminal peptide of thrombospondin-4 stimulates erythroid cell proliferation. Biochem Biophys Res Commun 2004; 324: 673–678.

    Article  CAS  Google Scholar 

  23. Frolova EG, Pluskota E, Krukovets I, Burke T, Drumm C, Smith JD et al. Thrombospondin-4 regulates vascular inflammation and atherogenesis. Circ Res 2010; 107: 1313–1325.

    Article  CAS  Google Scholar 

  24. Mustonen E, Ruskoaho H, Rysa J . Thrombospondin-4, tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14: novel extracellular matrix modulating factors in cardiac remodelling. Ann Med 2012; 44: 793–804.

    Article  CAS  Google Scholar 

  25. Lynch JM, Maillet M, Vanhoutte D, Schloemer A, Sargent MA, Blair NS et al. A thrombospondin-dependent pathway for a protective ER stress response. Cell 2012; 149: 1257–1268.

    Article  CAS  Google Scholar 

  26. Cingolani OH, Kirk JA, Seo K, Koitabashi N, Lee DI, Ramirez-Correa G et al. Thrombospondin-4 is required for stretch-mediated contractility augmentation in cardiac muscle. Circ Res 2011; 109: 1410–1414.

    Article  CAS  Google Scholar 

  27. Loeys BL, Mortier G, Dietz HC . Bone lessons from Marfan syndrome and related disorders: fibrillin, TGF-B and BMP at the balance of too long and too short. Pediatr Endocrinol Rev 2013; 10: 417–423.

    PubMed  Google Scholar 

  28. Yokoyama H, Deckert T . Central role of TGF-beta in the pathogenesis of diabetic nephropathy and macrovascular complications: a hypothesis. Diabet Med 1996; 13: 313–320.

    Article  CAS  Google Scholar 

  29. Senger DR, Davis GE . Angiogenesis. Cold Spring Harb Perspect Biol 2011; 3: a005090.

    Article  Google Scholar 

  30. Eming SA, Hubbell JA . Extracellular matrix in angiogenesis: dynamic structures with translational potential. Exp Dermatol 2011; 20: 605–613.

    Article  Google Scholar 

  31. Kostourou V, Papalazarou V . Non-collagenous ECM proteins in blood vessel morphogenesis and cancer. Biochim Biophys Acta 2014; 1840: 2403–2413.

    Article  CAS  Google Scholar 

  32. Verrecchia F, Mauviel A . Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol 2002; 118: 211–215.

    Article  CAS  Google Scholar 

  33. Yang Y, Zhou F, Fang Z, Wang L, Li Z, Sun L et al. Post-transcriptional and post-translational regulation of PTEN by transforming growth factor-beta1. J Cell Biochem 2009; 106: 1102–1112.

    Article  CAS  Google Scholar 

  34. Hoover LL, Kubalak SW . Holding their own: the noncanonical roles of Smad proteins. Sci Signal 2008; 1: pe48.

    Article  Google Scholar 

  35. Garcia R, Nistal JF, Merino D, Price NL, Fernandez-Hernando C, Beaumont J et al. p-SMAD2/3 and DICER promote pre-miR-21 processing during pressure overload-associated myocardial remodeling. Biochim Biophys Acta 2015; 1852: 1520–1530.

    Article  CAS  Google Scholar 

  36. Davis BN, Hilyard AC, Lagna G, Hata A . SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008; 454: 56–61.

    Article  CAS  Google Scholar 

  37. Chou YT, Yang YC . Post-transcriptional control of Cited2 by transforming growth factor beta. Regulation via Smads and Cited2 coding region. J Biol Chem 2006; 281: 18451–18462.

    Article  CAS  Google Scholar 

  38. Blanco FF, Sanduja S, Deane NG, Blackshear PJ, Dixon DA . Transforming growth factor beta regulates P-body formation through induction of the mRNA decay factor tristetraprolin. Mol Cell Biol 2014; 34: 180–195.

    Article  Google Scholar 

  39. Blahna MT, Hata A . Smad-mediated regulation of microRNA biosynthesis. FEBS Lett 2012; 586: 1906–1912.

    Article  CAS  Google Scholar 

  40. Jinnin M, Ihn H, Tamaki K . Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-beta1-induced extracellular matrix expression. Mol Pharmacol 2006; 69: 597–607.

    Article  CAS  Google Scholar 

  41. Krishnan S, Szabo E, Burghardt I, Frei K, Tabatabai G, Weller M . Modulation of cerebral endothelial cell function by TGF-beta in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition. Oncotarget 2015; 6: 22480–22495.

    Article  Google Scholar 

  42. James D, Nam HS, Seandel M, Nolan D, Janovitz T, Tomishima M et al. Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFbeta inhibition is Id1 dependent. Nat Biotechnol 2010; 28: 161–166.

    Article  CAS  Google Scholar 

  43. Petroll WM, Jester JV, Bean JJ, Cavanagh HD . Myofibroblast transformation of cat corneal endothelium by transforming growth factor-beta1, -beta2, and -beta3. Invest Ophthalmol Vis Sci 1998; 39: 2018–2032.

    CAS  PubMed  Google Scholar 

  44. Frolova EG, Sopko N, Blech L, Popovic ZB, Li J, Vasanji A et al. Thrombospondin-4 regulates fibrosis and remodeling of the myocardium in response to pressure overload. FASEB J 2012; 26: 2363–2373.

    Article  CAS  Google Scholar 

  45. Mahabeleshwar GH, Somanath PR, Byzova TV . Methods for isolation of endothelial and smooth muscle cells and in vitro proliferation assays. Methods Mol Med 2006; 129: 197–208.

    PubMed  Google Scholar 

  46. Soloviev DA, Pluskota E, Plow EF . Cell adhesion and migration assays. Methods Mol Med 2006; 129: 267–278.

    CAS  PubMed  Google Scholar 

  47. Stenina OI, Desai SY, Krukovets I, Kight K, Janigro D, Topol EJ et al. Thrombospondin-4 and its variants: expression and differential effects on endothelial cells. Circulation 2003; 108: 1514–1519.

    Article  CAS  Google Scholar 

  48. Bhattacharyya S, Sul K, Krukovets I, Nestor C, Li J, Adognravi OS . Novel tissue-specific mechanism of regulation of angiogenesis and cancer growth in response to hyperglycemia. J Am Heart Assoc 2012; 1: e005967.

    Article  Google Scholar 

  49. Bhattacharyya S, Marinic TE, Krukovets I, Hoppe G, Stenina OI . Cell type-specific post-transcriptional regulation of production of the potent antiangiogenic and proatherogenic protein thrombospondin-1 by high glucose. J Biol Chem 2008; 283: 5699–5707.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH R01HL117216 (OS-A and EP) and NIH CA177771 (OS-A). Isolation of HUVECs was supported by UL1TR000439. HUVECs were provided by a grant awarded to Clinical and Translational Science Collaborative of Cleveland, a grant from the National Center for Advancing Translational Sciences (UL1TR000439) component of the National Institutes of Health, and National Institutes of Health Roadmap for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Stenina-Adognravi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muppala, S., Xiao, R., Krukovets, I. et al. Thrombospondin-4 mediates TGF-β-induced angiogenesis. Oncogene 36, 5189–5198 (2017). https://doi.org/10.1038/onc.2017.140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.140

This article is cited by

Search

Quick links