Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CLIC4 regulates TGF-β-dependent myofibroblast differentiation to produce a cancer stroma

Abstract

Cancer stroma has a profound influence on tumor development and progression. The conversion of fibroblasts to activated myofibroblasts is a hallmark of reactive tumor stroma. Among a number of factors involved in this conversion, transforming growth factor (TGF)-β has emerged as a major regulator. CLIC4, an integral protein in TGF-β signaling, is highly upregulated in stroma of multiple human cancers, and overexpression of CLIC4 in stromal cells enhances the growth of cancer xenografts. In this study, we show that conditioned media from tumor cell lines induces expression of both CLIC4 and the myofibroblast marker alpha smooth muscle actin (α-SMA) in stromal fibroblasts via TGF-β signaling. Genetic ablation of CLIC4 in primary fibroblasts prevents or reduces constitutive or TGF-β-induced expression of α-SMA and extracellular matrix components that are markers of myofibroblasts. CLIC4 is required for the activation of p38 map kinase by TGF-β, a pathway that signals myofibroblast conversion in stromal cells. This requirement involves the interaction of CLIC4 with PPM1a, the selective phosphatase of activated p38. Conditioned media from fibroblasts overexpressing CLIC4 increases tumor cell migration and invasion in a TGF-β-dependent manner and promotes epithelial to mesenchymal transition indicating that high stromal CLIC4 serves to enhance tumor invasiveness and progression. Thus, CLIC4 is significantly involved in the development of a nurturing tumor microenvironment by enhancing TGF-β signaling in a positive feedback loop. Targeting CLIC4 in tumor stroma should be considered as a strategy to mitigate some of the tumor enhancing effects of the cancer stroma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Suh KS, Yuspa SH . Intracellular chloride channels: critical mediators of cell viability and potential targets for cancer therapy. Curr Pharm Des 2005; 11: 2753–2764.

    Article  CAS  PubMed  Google Scholar 

  2. Littler DR, Harrop SJ, Goodchild SC, Phang JM, Mynott AV, Jiang L et al. The enigma of the CLIC proteins: ion channels, redox proteins, enzymes, scaffolding proteins? FEBS Lett 2010; 584: 2093–2101.

    Article  CAS  PubMed  Google Scholar 

  3. Littler DR, Harrop SJ, Fairlie WD, Brown LJ, Pankhurst GJ, Pankhurst S et al. The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition. J Biol Chem 2004; 279: 9298–9305.

    Article  CAS  PubMed  Google Scholar 

  4. Littler DR, Assaad NN, Harrop SJ, Brown LJ, Pankhurst GJ, Luciani P et al. Crystal structure of the soluble form of the redox-regulated chloride ion channel protein CLIC4. FEBS J 2005; 272: 4996–5007.

    Article  CAS  PubMed  Google Scholar 

  5. Shorning BY, Wilson DB, Meehan RR, Ashley RH . Molecular cloning and developmental expression of two chloride intracellular channel (CLIC) genes in Xenopus laevis. Dev Genes Evol 2003; 213: 514–518.

    Article  CAS  PubMed  Google Scholar 

  6. Duncan RR, Westwood PK, Boyd A, Ashley RH . Rat brain p64H1, expression of a new member of the p64 chloride channel protein family in endoplasmic reticulum. J Biol Chem 1997; 272: 23880–23886.

    Article  CAS  PubMed  Google Scholar 

  7. Bohman S, Matsumoto T, Suh K, Dimberg A, Jakobsson L, Yuspa S et al. Proteomic analysis of vascular endothelial growth factor-induced endothelial cell differentiation reveals a role for chloride intracellular channel 4 (CLIC4) in tubular morphogenesis. J Biol Chem 2005; 280: 42397–42404.

    Article  CAS  PubMed  Google Scholar 

  8. Tung JJ, Hobert O, Berryman M, Kitajewski J . Chloride intracellular channel 4 is involved in endothelial proliferation and morphogenesis in vitro. Angiogenesis 2009; 12: 209–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ulmasov B, Bruno J, Gordon N, Hartnett ME, Edwards JC . Chloride intracellular channel protein-4 functions in angiogenesis by supporting acidification of vacuoles along the intracellular tubulogenic pathway. Am J Pathol 2009; 174: 1084–1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Padmakumar VC, Speer K, Pal-Ghosh S, Masiuk KE, Ryscavage A, Dengler SL et al. Spontaneous skin erosions and reduced skin and corneal wound healing characterize CLIC4(NULL) mice. Am J Pathol 2012; 181: 74–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ronnov-Jessen L, Villadsen R, Edwards JC, Petersen OW . Differential expression of a chloride intracellular channel gene, CLIC4, in transforming growth factor-beta1-mediated conversion of fibroblasts to myofibroblasts. Am J Pathol 2002; 161: 471–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suh KS, Crutchley JM, Koochek A, Ryscavage A, Bhat K, Tanaka T et al. Reciprocal modifications of CLIC4 in tumor epithelium and stroma mark malignant progression of multiple human cancers. Clin Cancer Res 2007; 13: 121–131.

    Article  CAS  PubMed  Google Scholar 

  13. Shukla A, Malik M, Cataisson C, Ho Y, Friesen T, Suh KS et al. TGF-beta signalling is regulated by Schnurri-2-dependent nuclear translocation of CLIC4 and consequent stabilization of phospho-Smad2 and 3. Nat Cell Biol 2009; 11: 777–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shukla A, Yuspa SH . CLIC4 and Schnurri-2: a dynamic duo in TGF-beta signaling with broader implications in cellular homeostasis and disease. Nucleus 2010; 1: 144–149.

    Article  PubMed  Google Scholar 

  15. Tlsty TD . Stromal cells can contribute oncogenic signals. Semin Cancer Biol 2001; 11: 97–104.

    Article  CAS  PubMed  Google Scholar 

  16. De WO, Demetter P, Mareel M, Bracke M . Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 2008; 123: 2229–2238.

    Article  Google Scholar 

  17. Santner SJ, Dawson PJ, Tait L, Soule HD, Eliason J, Mohamed AN et al. Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res Treat 2001; 65: 101–110.

    Article  CAS  PubMed  Google Scholar 

  18. Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR et al. TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression.1. J Clin Invest 2003; 112: 1116–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hinz B . Formation and function of the myofibroblast during tissue repair.1. J Invest Dermatol 2007; 127: 526–537.

    Article  CAS  PubMed  Google Scholar 

  20. Ronnov-Jessen L, Petersen OW . A function for filamentous alpha-smooth muscle actin: retardation of motility in fibroblasts.1. J Cell Biol 1996; 134: 67–80.

    Article  CAS  PubMed  Google Scholar 

  21. Brenmoehl J, Miller SN, Hofmann C, Vogl D, Falk W, Scholmerich J et al. Transforming growth factor-beta 1 induces intestinal myofibroblast differentiation and modulates their migration. World J Gastroenterol 2009; 15: 1431–1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin X, Duan X, Liang YY, Su Y, Wrighton KH, Long J et al. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell 2006; 125: 915–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takekawa M, Maeda T, Saito H . Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways. EMBO J 1998; 17: 4744–4752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng A, Kaldis P, Solomon MJ . Dephosphorylation of human cyclin-dependent kinases by protein phosphatase type 2C alpha and beta 2 isoforms. J Biol Chem 2000; 275: 34744–34749.

    Article  CAS  PubMed  Google Scholar 

  25. Sun W, Yu Y, Dotti G, Shen T, Tan X, Savoldo B et al. PPM1A and PPM1B act as IKKbeta phosphatases to terminate TNFalpha-induced IKKbeta-NF-kappaB activation. Cell Signal 2009; 21: 95–102.

    Article  CAS  PubMed  Google Scholar 

  26. Miyazono K . Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci 2009; 85: 314–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rheinwald JG, Beckett MA . Tumorigenic keratinocyte lines requiring anchorage and fibroblast support cultures from human squamous cell carcinomas. Cancer Res 1981; 41: 1657–1663.

    CAS  PubMed  Google Scholar 

  28. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR . Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 1999; 59: 5002–5011.

    CAS  PubMed  Google Scholar 

  29. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121: 335–348.

    Article  CAS  PubMed  Google Scholar 

  30. Tuxhorn JA, McAlhany SJ, Dang TD, Ayala GE, Rowley DR . Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model. Cancer Res 2002; 62: 3298–3307.

    CAS  PubMed  Google Scholar 

  31. De Wever O, Mareel M . Role of tissue stroma in cancer cell invasion. J Pathol 2003; 200: 429–447.

    Article  CAS  PubMed  Google Scholar 

  32. Lu SL, Herrington H, Reh D, Weber S, Bornstein S, Wang D et al. Loss of transforming growth factor-beta type II receptor promotes metastatic head-and-neck squamous cell carcinoma. Genes Dev 2006; 20: 1331–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ronnov-Jessen L, Petersen OW, Bissell MJ . Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 1996; 76: 69–125.

    Article  CAS  PubMed  Google Scholar 

  34. Adegboyega PA, Rodriguez S, McLarty J . Stromal expression of actin is a marker of aggressiveness in basal cell carcinoma. Hum Pathol 2010; 41: 1128–1137.

    Article  CAS  PubMed  Google Scholar 

  35. Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C . Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 2001; 12: 2730–2741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G . Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 2001; 159: 1009–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tsujino T, Seshimo I, Yamamoto H, Ngan CY, Ezumi K, Takemasa I et al. Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin Cancer Res 2007; 13: 2082–2090.

    Article  CAS  PubMed  Google Scholar 

  38. Hu B, Wu Z, Phan SH . Smad3 mediates transforming growth factor-beta-induced alpha-smooth muscle actin expression. Am J Respir Cell Mol Biol 2003; 29 (3 Pt 1): 397–404.

    Article  CAS  PubMed  Google Scholar 

  39. Uemura M, Swenson ES, Gaca MD, Giordano FJ, Reiss M, Wells RG . Smad2 and Smad3 play different roles in rat hepatic stellate cell function and alpha-smooth muscle actin organization. Mol Biol Cell 2005; 16: 4214–4224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Evans RA, Tian YC, Steadman R, Phillips AO . TGF-beta1-mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins. Exp Cell Res 2003; 282: 90–100.

    Article  CAS  PubMed  Google Scholar 

  41. Caraci F, Gili E, Calafiore M, Failla M, La RC, Crimi N et al. TGF-beta1 targets the GSK-3beta/beta-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res 2008; 57: 274–282.

    Article  CAS  PubMed  Google Scholar 

  42. Meyer-Ter-Vehn T, Gebhardt S, Sebald W, Buttmann M, Grehn F, Schlunck G et al. p38 inhibitors prevent TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts. Invest Ophthalmol Vis Sci 2006; 47: 1500–1509.

    Article  PubMed  Google Scholar 

  43. Yao Q, Qu X, Yang Q, Wei M, Kong B . CLIC4 mediates TGF-beta1-induced fibroblast-to-myofibroblast transdifferentiation in ovarian cancer. Oncol Rep 2009; 22: 541–548.

    CAS  PubMed  Google Scholar 

  44. Das AK, Helps NR, Cohen PT, Barford D . Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J 1996; 15: 6798–6809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qian Z, Okuhara D, Abe MK, Rosner MR . Molecular cloning and characterization of a mitogen-activated protein kinase-associated intracellular chloride channel. J Biol Chem 1999; 274: 1621–1627.

    Article  CAS  PubMed  Google Scholar 

  46. Micke P, Ostman A . Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer 2004; 45 (Suppl 2): S163–S175.

    Article  PubMed  Google Scholar 

  47. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu M, Xu J, Deng H . Tangled fibroblasts in tumor-stroma interactions. Int J Cancer 2011; 129: 1795–1805.

    Article  CAS  PubMed  Google Scholar 

  49. Saunier EF, Akhurst RJ . TGF beta inhibition for cancer therapy. Curr Cancer Drug Targets 2006; 6: 565–578.

    Article  CAS  PubMed  Google Scholar 

  50. Yingling JM, Blanchard KL, Sawyer JS . Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004; 3: 1011–1022.

    Article  CAS  PubMed  Google Scholar 

  51. Connolly EC, Saunier EF, Quigley D, Luu MT, De SA, Hann B et al. Outgrowth of drug-resistant carcinomas expressing markers of tumor aggression after long-term TbetaRI/II kinase inhibition with LY2109761. Cancer Res 2011; 71: 2339–2349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bierie B, Moses HL . Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006; 6: 506–520.

    Article  CAS  PubMed  Google Scholar 

  53. Lichti U, Anders J, Yuspa SH . Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nat Protoc 2008; 3: 799–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fernandez-Salas E, Sagar M, Cheng C, Yuspa SH, Weinberg WC . p53 and tumor necrosis factor α regulate the expression of a mitochondrial chloride channel protein. J Biol Chem 1999; 274: 36488–36497.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Lalage Wakefield, National Cancer Institute, Bethesda for providing Smad3 KO mice and MI, MII, MIII, MIV cell lines, Dr Ed Leof, Department of Biochemistry and Molecular Biology, Mayo Clinic, Minnesota for providing anti-phospho Smad3 antibody and Dr Akira Oshima, National Cancer Institute for help with immunofluorescence. This work was supported by the intramural research program of the Center for Cancer Research, National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S H Yuspa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, A., Edwards, R., Yang, Y. et al. CLIC4 regulates TGF-β-dependent myofibroblast differentiation to produce a cancer stroma. Oncogene 33, 842–850 (2014). https://doi.org/10.1038/onc.2013.18

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.18

Keywords

This article is cited by

Search

Quick links