Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer

Abstract

Proteolysis targeting chimeric molecules (Protacs) target proteins for destruction by exploiting the ubiquitin-dependent proteolytic system of eukaryotic cells. We designed two Protacs that contain the peptide ‘degron’ from hypoxia-inducible factor-1α, which binds to the Von –Hippel–Lindau (VHL) E3 ubiquitin ligase complex, linked to either dihydroxytestosterone that targets the androgen receptor (AR; Protac-A), or linked to estradiol (E2) that targets the estrogen receptor-α (ERα; Protac-B). We hypothesized that these Protacs would recruit hormone receptors to the VHL E3 ligase complex, resulting in the degradation of receptors, and decreased proliferation of hormone-dependent cell lines. Treatment of estrogen-dependent breast cancer cells with Protac-B induced the degradation of ERα in a proteasome-dependent manner. Protac-B inhibited the proliferation of ERα-dependent breast cancer cells by inducing G1 arrest, inhibition of retinoblastoma phosphorylation and decreasing expression of cyclin D1, progesterone receptors A and B. Protac-B treatment did not affect the proliferation of estrogen-independent breast cancer cells that lacked ERα expression. Similarly, Protac-A treatment of androgen-dependent prostate cancer cells induced G1 arrest but did not affect cells that do not express AR. Our results suggest that Protacs specifically inhibit the proliferation of hormone-dependent breast and prostate cancer cells through degradation of the ERα and AR, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alarid ET, Preisler-Mashek MT, Solodin NM . (2003). Thyroid hormone is an inhibitor of estrogen-induced degradation of estrogen receptor-alpha protein: estrogen-dependent proteolysis is not essential for receptor transactivation function in the pituitary. Endocrinology 144: 3469–3476.

    Article  CAS  PubMed  Google Scholar 

  • Bakin RE, Gioeli D, Sikes RA, Bissonette EA, Weber MJ . (2003). Constitutive activation of the Ras/mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells. Cancer Res 63: 1981–1989.

    CAS  PubMed  Google Scholar 

  • Bargagna-Mohan P, Baek SH, Lee H, Kim K, Mohan R . (2005). Use of PROTACS as molecular probes of angiogenesis. Bioorg Med Chem Lett 15: 2724–2727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blundell TL . (1996). Structure-based drug design. Nature 384: 23–26.

    Article  CAS  PubMed  Google Scholar 

  • Borras M, Laios I, el Khissiin A, Seo HS, Lempereur F, Legros N et al. (1996). Estrogenic and antiestrogenic regulation of the half-life of covalently labeled estrogen receptor in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol 57: 203–213.

    Article  CAS  PubMed  Google Scholar 

  • Broach JR, Thorner J . (1996). High-throughput screening for drug discovery. Nature 384: 14–16.

    Article  CAS  PubMed  Google Scholar 

  • Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC et al. (1999). Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res 59: 803–806.

    CAS  PubMed  Google Scholar 

  • Butt AJ, McNeil CM, Musgrove EA, Sutherland RL . (2005). Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat Cancer 12 (Suppl 1): S47–S59.

    Article  CAS  PubMed  Google Scholar 

  • Buzdar AU . (2003). Advances in endocrine treatments for postmenopausal women with metastatic and early breast cancer. Oncologist 8: 335–341.

    Article  CAS  PubMed  Google Scholar 

  • Clarke R, Skaar T, Leonessa F, Brankin B, James M, Brunner N et al. (1996). Acquisition of an antiestrogen-resistant phenotype in breast cancer: role of cellular and molecular mechanisms. Cancer Treat Res 87: 263–283.

    Article  CAS  PubMed  Google Scholar 

  • Craft N, Shostak Y, Carey M, Sawyers CL . (1999). A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 5: 280–285.

    Article  CAS  PubMed  Google Scholar 

  • Culig Z, Hobisch A, Cronauer MV, Radmayr C, Trapman J, Hittmair A et al. (1994). Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54: 5474–5478.

    CAS  PubMed  Google Scholar 

  • Culig Z, Hoffmann J, Erdel M, Eder IE, Hobisch A, Hittmair A et al. (1999). Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system. Br J Cancer 81: 242–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culig Z, Klocker H, Bartsch G, Steiner H, Hobisch A . (2003). Androgen receptors in prostate cancer. J Urol 170: 1363–1369.

    Article  CAS  PubMed  Google Scholar 

  • Dauvois S, Danielian PS, White R, Parker MG . (1992). Antiestrogen ICI 164384 reduces cellular estrogen receptor content by increasing its turnover. Proc Natl Acad Sci USA 89: 4037–4041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doisneau-Sixou SF, Sergio CM, Carroll JS, Hui R, Musgrove EA, Sutherland RL . (2003). Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr Relat Cancer 10: 179–186.

    Article  CAS  PubMed  Google Scholar 

  • Duong V, Boulle N, Daujat S, Chauvet J, Bonnet S, Neel H et al. (2007). Differential regulation of estrogen receptor alpha turnover and transactivation by Mdm2 and stress-inducing agents. Cancer Res 67: 5513–5521.

    Article  CAS  PubMed  Google Scholar 

  • Eder IE, Hoffmann J, Rogatsch H, Schafer G, Zopf D, Bartsch G et al. (2002). Inhibition of LNCaP prostate tumor growth in vivo by an antisense oligonucleotide directed against the human androgen receptor. Cancer Gene Ther 9: 117–125.

    Article  CAS  PubMed  Google Scholar 

  • Ellis MJ, Coop A, Singh B, Mauriac L, Llombert-Cussac A, Janicke F et al. (2001). Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a phase III randomized trial. J Clin Oncol 19: 3808–3816.

    Article  CAS  PubMed  Google Scholar 

  • Fan M, Nakshatri H, Nephew KP . (2004). Inhibiting proteasomal proteolysis sustains estrogen receptor-alpha activation. Mol Endocrinol 18: 2603–2615.

    Article  CAS  PubMed  Google Scholar 

  • Franco OE, Onishi T, Yamakawa K, Arima K, Yanagawa M, Sugimura Y et al. (2003). Mitogen-activated protein kinase pathway is involved in androgen-independent PSA gene expression in LNCaP cells. Prostate 56: 319–325.

    Article  CAS  PubMed  Google Scholar 

  • Gaddipati JP, McLeod DG, Heidenberg HB, Sesterhenn IA, Finger MJ, Moul JW et al. (1994). Frequent detection of codon 877 mutation in the androgen receptor gene in advanced prostate cancers. Cancer Res 54: 2861–2864.

    CAS  PubMed  Google Scholar 

  • Godoy-Tundidor S, Hobisch A, Pfeil K, Bartsch G, Culig Z . (2002). Acquisition of agonistic properties of nonsteroidal antiandrogens after treatment with oncostatin M in prostate cancer cells. Clin Cancer Res 8: 2356–2361.

    CAS  PubMed  Google Scholar 

  • Hogan Jr JC . (1996). Directed combinatorial chemistry. Nature 384: 17–19.

    CAS  PubMed  Google Scholar 

  • Huggins C . (1967). Endocrine-induced regression of cancers. Cancer Res 27: 1925–1930.

    CAS  PubMed  Google Scholar 

  • Karin M, Ben-Neriah Y . (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18: 621–663.

    Article  CAS  PubMed  Google Scholar 

  • Kim WY, Kaelin WG . (2004). Role of VHL gene mutation in human cancer. J Clin Oncol 22: 4991–5004.

    Article  CAS  PubMed  Google Scholar 

  • Kirschberg TA, VanDeusen CL, Rothbard JB, Yang M, Wender PA . (2003). Arginine-based molecular transporters: the synthesis and chemical evaluation of releasable taxol-transporter conjugates. Org Lett 5: 3459–3462.

    Article  CAS  PubMed  Google Scholar 

  • Klein-Hitpass L, Ryffel GU, Heitlinger E, Cato AC . (1988). A 13 bp palindrome is a functional estrogen responsive element and interacts specifically with estrogen receptor. Nucleic Acids Res 16: 647–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knudsen KE, Arden KC, Cavenee WK . (1998). Multiple G1 regulatory elements control the androgen-dependent proliferation of prostatic carcinoma cells. J Biol Chem 273: 20213–20222.

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Tang S, Thrasher JB, Griebling TL, Li B . (2005). Small-interfering RNA-induced androgen receptor silencing leads to apoptotic cell death in prostate cancer. Mol Cancer Ther 4: 505–515.

    Article  CAS  PubMed  Google Scholar 

  • Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T . (2001). Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 61: 3550–3555.

    CAS  PubMed  Google Scholar 

  • Lonard DM, Nawaz Z, Smith CL, O'Malley BW . (2000). The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell 5: 939–948.

    Article  CAS  PubMed  Google Scholar 

  • Moul JW . (2000). Prostate specific antigen only progression of prostate cancer. J Urol 163: 1632–1642.

    Article  CAS  PubMed  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P . (2005). Global cancer statistics, 2002. CA Cancer J Clin 55: 74–108.

    Article  PubMed  Google Scholar 

  • Pink JJ, Jordan VC . (1996). Models of estrogen receptor regulation by estrogens and antiestrogens in breast cancer cell lines. Cancer Res 56: 2321–2330.

    CAS  PubMed  Google Scholar 

  • Preisler-Mashek MT, Solodin N, Stark BL, Tyriver MK, Alarid ET . (2002). Ligand-specific regulation of proteasome-mediated proteolysis of estrogen receptor-alpha. Am J Physiol Endocrinol Metab 282: E891–E898.

    Article  CAS  PubMed  Google Scholar 

  • Rau KM, Kang HY, Cha TL, Miller SA, Hung MC . (2005). The mechanisms and managements of hormone-therapy resistance in breast and prostate cancers. Endocr Relat Cancer 12: 511–532.

    Article  CAS  PubMed  Google Scholar 

  • Reid G, Hubner MR, Metivier R, Brand H, Denger S, Manu D et al. (2003). Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 11: 695–707.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ . (2001). Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA 98: 8554–8559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto KM, Kim KB, Verma R, Ransick A, Stein B, Crews CM et al. (2003). Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol Cell Proteomics 2: 1350–1358.

    Article  CAS  PubMed  Google Scholar 

  • Santen RJ . (1992). Clinical review 37: endocrine treatment of prostate cancer. J Clin Endocrinol Metab 75: 685–689.

    CAS  PubMed  Google Scholar 

  • Savarese DM, Halabi S, Hars V, Akerley WL, Taplin ME, Godley PA et al. (2001). Phase II study of docetaxel, estramustine, and low-dose hydrocortisone in men with hormone-refractory prostate cancer: a final report of CALGB 9780. Cancer and Leukemia Group B. J Clin Oncol 19: 2509–2516.

    Article  CAS  PubMed  Google Scholar 

  • Savouret JF, Bailly A, Misrahi M, Rauch C, Redeuilh G, Chauchereau A et al. (1991). Characterization of the hormone responsive element involved in the regulation of the progesterone receptor gene. EMBO J 10: 1875–1883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneekloth Jr JS, Fonseca FN, Koldobskiy M, Mandal A, Deshaies R, Sakamoto K et al. (2004). Chemical genetic control of protein levels: selective in vivo targeted degradation. J Am Chem Soc 126: 3748–3754.

    Article  CAS  PubMed  Google Scholar 

  • Taplin ME, Bubley GJ, Ko YJ, Small EJ, Upton M, Rajeshkumar B et al. (1999). Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 59: 2511–2515.

    CAS  PubMed  Google Scholar 

  • Thiele B, Weidemann W, Schnabel D, Romalo G, Schweikert HU, Spindler KD . (1999). Complete androgen insensitivity caused by a new frameshift deletion of two base pairs in exon 1 of the human androgen receptor gene. J Clin Endocrinol Metab 84: 1751–1753.

    CAS  PubMed  Google Scholar 

  • Ueda T, Bruchovsky N, Sadar MD . (2002). Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem 277: 7076–7085.

    Article  CAS  PubMed  Google Scholar 

  • Verdine GL . (1996). The combinatorial chemistry of nature. Nature 384: 11–13.

    Article  CAS  PubMed  Google Scholar 

  • Wijayaratne AL, McDonnell DP . (2001). The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem 276: 35684–35692.

    Article  CAS  PubMed  Google Scholar 

  • Zegarra-Moro OL, Schmidt LJ, Huang H, Tindall DJ . (2002). Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Res 62: 1008–1013.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Tammy Phung for her kind assistance in the flow cytometry performance in the UCLA Jonsson Comprehensive Cancer Center and Center for AIDS Research Flow Core Facility that is supported by the national Institutes of Health awards CA-16042 and AI-28697, by the Jonsson Cancer Center, the UCLA AIDS Institute and the David Geffen School of Medicine at UCLA. This work was supported by NIH R21 CA108545 (KMS), Department of Defense (USA) Prostate Cancer Research Program W81XWH-06-1-0192 (AR), Postdoctoral fellowship Ministerio de Educacion y Ciencia (Spain) MEC/Fulbright EX 2005-0517 (AR) and NIH R21 R21 CA118631 (CMC). RJD is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K M Sakamoto.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Gonzalez, A., Cyrus, K., Salcius, M. et al. Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene 27, 7201–7211 (2008). https://doi.org/10.1038/onc.2008.320

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.320

Keywords

This article is cited by

Search

Quick links