Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

NK cells and cancer immunosurveillance

Abstract

Natural killer (NK) cells are lymphocytes of the innate immune system that monitor cell surfaces of autologous cells for an aberrant expression of MHC class I molecules and cell stress markers. Since their first description more than 30 years ago, NK cells have been implicated in the immune defence against tumours. Here, we review the broadly accumulating evidence for a crucial contribution of NK cells to the immunosurveillance of tumours and the molecular mechanisms that allow NK cells to distinguish malignant from healthy cells. Particular emphasis is placed on the activating NK receptor NKG2D, which recognizes a variety of MHC class I-related molecules believed to act as ‘immuno-alerters’ on malignant cells, and on tumour-mediated counterstrategies promoting escape from NKG2D-mediated recognition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adam C, King S, Allgeier T, Braumuller H, Luking C, Mysliwietz J et al. (2005). DC–NK cell cross talk as a novel CD4+ T-cell-independent pathway for antitumor CTL induction. Blood 106: 338–344.

    CAS  PubMed  Google Scholar 

  • Albertsson PA, Basse PH, Hokland M, Goldfarb RH, Nagelkerke JF, Nannmark U et al. (2003). NK cells and the tumour microenvironment: implications for NK-cell function and anti-tumour activity. Trends Immunol 24: 603–609.

    CAS  PubMed  Google Scholar 

  • Aldemir H, Prod'homme V, Dumaurier MJ, Retiere C, Poupon G, Cazareth J et al. (2005). Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor. J Immunol 175: 7791–7795.

    CAS  PubMed  Google Scholar 

  • Algarra I, Cabrera T, Garrido F . (2000). The HLA crossroad in tumor immunology. Hum Immunol 61: 65–73.

    CAS  PubMed  Google Scholar 

  • Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA et al. (2006). Human NK cell education by inhibitory receptors for MHC class I. Immunity 25: 331–342.

    CAS  PubMed  Google Scholar 

  • Arnon TI, Achdout H, Levi O, Markel G, Saleh N, Katz G et al. (2005). Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nat Immunol 6: 515–523.

    CAS  PubMed  Google Scholar 

  • Arnon TI, Markel G, Mandelboim O . (2006). Tumor and viral recognition by natural killer cells receptors. Semin Cancer Biol 16: 348–358.

    CAS  PubMed  Google Scholar 

  • Bahram S, Bresnahan M, Geraghty DE, Spies T . (1994). A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci USA 91: 6259–6263.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahram S, Inoko H, Shiina T, Radosavljevic M . (2005). MIC and other NKG2D ligands: from none to too many. Curr Opin Immunol 17: 505–509.

    CAS  PubMed  Google Scholar 

  • Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL et al. (1999). Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285: 727–729.

    CAS  PubMed  Google Scholar 

  • Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP . (1999). Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17: 189–220.

    CAS  PubMed  Google Scholar 

  • Bloushtain N, Qimron U, Bar-Ilan A, Hershkovitz O, Gazit R, Fima E et al. (2004). Membrane-associated heparan sulfate proteoglycans are involved in the recognition of cellular targets by NKp30 and NKp46. J Immunol 173: 2392–2401.

    CAS  PubMed  Google Scholar 

  • Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B et al. (2003). Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198: 557–567.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braud VM, Allan DS, O'Callaghan CA, Soderstrom K, D'Andrea A, Ogg GS et al. (1998). HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391: 795–799.

    CAS  PubMed  Google Scholar 

  • Brown MH, Boles K, van der Merwe PA, Kumar V, Mathew PA, Barclay AN . (1998). 2B4, the natural killer and T cell immunoglobulin superfamily surface protein, is a ligand for CD48. J Exp Med 188: 2083–2090.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess SJ, Marusina AI, Pathmanathan I, Borrego F, Coligan JE . (2006). IL-21 down-regulates NKG2D/DAP10 expression on human NK and CD8+ T cells. J Immunol 176: 1490–1497.

    CAS  PubMed  Google Scholar 

  • Carayannopoulos LN, Naidenko OV, Fremont DH, Yokoyama WM . (2002a). Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J Immunol 169: 4079–4083.

    CAS  PubMed  Google Scholar 

  • Carayannopoulos LN, Naidenko OV, Kinder J, Ho EL, Fremont DH, Yokoyama WM . (2002b). Ligands for murine NKG2D display heterogeneous binding behavior. Eur J Immunol 32: 597–605.

    CAS  PubMed  Google Scholar 

  • Carlsten M, Bjorkstrom NK, Norell H, Bryceson Y, van Hall T, Baumann BC et al. (2007). DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res 67: 1317–1325.

    CAS  PubMed  Google Scholar 

  • Carlyle JR, Jamieson AM, Gasser S, Clingan CS, Arase H, Raulet DH . (2004). Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc Natl Acad Sci USA 101: 3527–3532.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castriconi R, Cantoni C, Della CM, Vitale M, Marcenaro E, Conte R et al. (2003). Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 100: 4120–4125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cerwenka A, Bakker AB, McClanahan T, Wagner J, Wu J, Phillips JH et al. (2000). Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12: 721–727.

    CAS  PubMed  Google Scholar 

  • Cerwenka A, Baron JL, Lanier LL . (2001). Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci USA 98: 11521–11526.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan A, Hong DL, Atzberger A, Kollnberger S, Filer AD, Buckley CD et al. (2007). CD56bright human NK cells differentiate into CD56dim cells: role of contact with peripheral fibroblasts. J Immunol 179: 89–94.

    CAS  PubMed  Google Scholar 

  • Classen CF, Falk CS, Friesen C, Fulda S, Herr I, Debatin KM . (2003). Natural killer resistance of a drug-resistant leukemia cell line, mediated by up-regulation of HLA class I expression. Haematologica 88: 509–521.

    PubMed  Google Scholar 

  • Coca S, Perez-Piqueras J, Martinez D, Colmenarejo A, Saez MA, Vallejo C et al. (1997). The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 79: 2320–2328.

    CAS  PubMed  Google Scholar 

  • Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W et al. (2001). ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14: 123–133.

    CAS  PubMed  Google Scholar 

  • Costello RT, Fauriat C, Sivori S, Marcenaro E, Olive D . (2004). NK cells: innate immunity against hematological malignancies? Trends Immunol 25: 328–333.

    CAS  PubMed  Google Scholar 

  • Costello RT, Sivori S, Marcenaro E, Lafage-Pochitaloff M, Mozziconacci MJ, Reviron D et al. (2002). Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 99: 3661–3667.

    CAS  PubMed  Google Scholar 

  • Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T et al. (2001). MICA engagement by human Vgamma2Vdelta2T cells enhances their antigen-dependent effector function. Immunity 15: 83–93.

    CAS  PubMed  Google Scholar 

  • Della Chiesa M, Carlomagno S, Frumento G, Balsamo M, Cantoni C, Conte R et al. (2006). The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood 108: 4118–4125.

    CAS  PubMed  Google Scholar 

  • Diefenbach A, Hsia JK, Hsiung MY, Raulet DH . (2003). A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity. Eur J Immunol 33: 381–391.

    CAS  PubMed  Google Scholar 

  • Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH . (2000). Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 1: 119–126.

    CAS  PubMed  Google Scholar 

  • Diefenbach A, Jensen ER, Jamieson AM, Raulet DH . (2001). Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413: 165–171.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diefenbach A, Raulet DH . (2001). Strategies for target cell recognition by natural killer cells. Immunol Rev 181: 170–184.

    CAS  PubMed  Google Scholar 

  • Diefenbach A, Tomasello E, Lucas M, Jamieson AM, Hsia JK, Vivier E et al. (2002). Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol 3: 1142–1149.

    CAS  PubMed  Google Scholar 

  • Dorner BG, Smith HR, French AR, Kim S, Poursine-Laurent J, Beckman DL et al. (2004). Coordinate expression of cytokines and chemokines by NK cells during murine cytomegalovirus infection. J Immunol 172: 3119–3131..

    CAS  PubMed  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD . (2004). The three Es of cancer immunoediting. Annu Rev Immunol 22: 329–360.

    CAS  PubMed  Google Scholar 

  • Eagle RA, Trowsdale J . (2007). Promiscuity and the single receptor: NKG2D. Nat Rev Immunol 7: 737–744.

    CAS  PubMed  Google Scholar 

  • Eisele G, Wischhusen J, Mittelbronn M, Meyermann R, Waldhauer I, Steinle A et al. (2006). TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain 129: 2416–2425.

    PubMed  Google Scholar 

  • El Sherbiny YM, Meade JL, Holmes TD, McGonagle D, Mackie SL, Morgan AW et al. (2007). The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res 67: 8444–8449.

    CAS  PubMed  Google Scholar 

  • Esendagli G, Bruderek K, Goldmann T, Busche A, Branscheid D, Vollmer E et al. (2008). Malignant and non-malignant lung tissue areas are differentially populated by natural killer cells and regulatory T cells in non-small cell lung cancer. Lung Cancer 59: 32–40.

    CAS  PubMed  Google Scholar 

  • Ferlazzo G, Munz C . (2004). NK cell compartments and their activation by dendritic cells. J Immunol 172: 1333–1339.

    CAS  PubMed  Google Scholar 

  • French AR, Yokoyama WM . (2003). Natural killer cells and viral infections. Curr Opin Immunol 15: 45–51.

    CAS  PubMed  Google Scholar 

  • Freud AG, Caligiuri MA . (2006). Human natural killer cell development. Immunol Rev 214: 56–72.

    CAS  PubMed  Google Scholar 

  • Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A et al. (2004). RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64: 7596–7603.

    CAS  PubMed  Google Scholar 

  • Garrity D, Call ME, Feng J, Wucherpfennig KW . (2005). The activating NKG2D receptor assembles in the membrane with two signaling dimers into a hexameric structure. Proc Natl Acad Sci USA 102: 7641–7646.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasser S, Orsulic S, Brown EJ, Raulet DH . (2005). The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436: 1186–1190.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilfillan S, Ho EL, Cella M, Yokoyama WM, Colonna M . (2002). NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat Immunol 3: 1150–1155.

    CAS  PubMed  Google Scholar 

  • Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R et al. (2001). Regulation of cutaneous malignancy by gammadelta T cells. Science 294: 605–609.

    CAS  PubMed  Google Scholar 

  • Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T . (1996). Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA 93: 12445–12450.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groh V, Bruhl A, El Gabalawy H, Nelson JL, Spies T . (2003). Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc Natl Acad Sci USA 100: 9452–9457.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T . (2001). Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2: 255–260.

    CAS  PubMed  Google Scholar 

  • Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T . (1999). Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA 96: 6879–6884.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groh V, Smythe K, Dai Z, Spies T . (2006). Fas-ligand-mediated paracrine T cell regulation by the receptor NKG2D in tumor immunity. Nat Immunol 7: 755–762.

    CAS  PubMed  Google Scholar 

  • Groh V, Wu J, Yee C, Spies T . (2002). Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419: 734–738.

    CAS  PubMed  Google Scholar 

  • Grundemann C, Bauer M, Schweier O, von Oppen N, Lassing U, Saudan P et al. (2006). Cutting edge: identification of E-cadherin as a ligand for the murine killer cell lectin-like receptor G1. J Immunol 176: 1311–1315.

    PubMed  Google Scholar 

  • Hamerman JA, Ogasawara K, Lanier LL . (2004). Cutting edge: Toll-like receptor signaling in macrophages induces ligands for the NKG2D receptor. J Immunol 172: 2001–2005.

    CAS  PubMed  Google Scholar 

  • Hayakawa Y, Huntington ND, Nutt SL, Smyth MJ . (2006). Functional subsets of mouse natural killer cells. Immunol Rev 214: 47–55.

    CAS  PubMed  Google Scholar 

  • Hayakawa Y, Smyth MJ . (2006a). CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol 176: 1517–1524.

    CAS  PubMed  Google Scholar 

  • Hayakawa Y, Smyth MJ . (2006b). Innate immune recognition and suppression of tumors. Adv Cancer Res 95: 293–322.

    CAS  PubMed  Google Scholar 

  • Herberman RB, Nunn ME, Holden HT, Lavrin DH . (1975a). Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 16: 230–239.

    CAS  PubMed  Google Scholar 

  • Herberman RB, Nunn ME, Lavrin DH . (1975b). Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 16: 216–229.

    CAS  PubMed  Google Scholar 

  • Ho EL, Carayannopoulos LN, Poursine-Laurent J, Kinder J, Plougastel B, Smith HR et al. (2002). Costimulation of multiple NK cell activation receptors by NKG2D. J Immunol 169: 3667–3675.

    CAS  PubMed  Google Scholar 

  • Hokland M, Kjaergaard J, Kuppen PJ, Nannmark U, Agger R, Hokland P et al. (1999). Endogenous and adoptively transferred A-NK and T-LAK cells continuously accumulate within murine metastases up to 48 h after inoculation. In Vivo 13: 199–204.

    CAS  PubMed  Google Scholar 

  • Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A, Salih HR . (2006a). Soluble MICA in malignant diseases. Int J Cancer 118: 684–687.

    CAS  PubMed  Google Scholar 

  • Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A, Salih HR . (2006b). Soluble MICB in malignant diseases: analysis of diagnostic significance and correlation with soluble MICA. Cancer Immunol Immunother 55: 1584–1589.

    PubMed  Google Scholar 

  • Houchins JP, Yabe T, McSherry C, Bach FH . (1991). DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med 173: 1017–1020.

    CAS  PubMed  Google Scholar 

  • Hsu KC, Keever-Taylor CA, Wilton A, Pinto C, Heller G, Arkun K et al. (2005). Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood 105: 4878–4884.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iizuka K, Naidenko OV, Plougastel BF, Fremont DH, Yokoyama WM . (2003). Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nat Immunol 4: 801–807.

    CAS  PubMed  Google Scholar 

  • Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K . (2000). Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356: 1795–1799.

    CAS  PubMed  Google Scholar 

  • Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Che X, Iwashige H et al. (2000). Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88: 577–583.

    CAS  PubMed  Google Scholar 

  • Ito M, Maruyama T, Saito N, Koganei S, Yamamoto K, Matsumoto N . (2006). Killer cell lectin-like receptor G1 binds three members of the classical cadherin family to inhibit NK cell cytotoxicity. J Exp Med 203: 289–295.

    PubMed  PubMed Central  Google Scholar 

  • Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH . (2002). The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 17: 19–29.

    CAS  PubMed  Google Scholar 

  • Jinushi M, Takehara T, Tatsumi T, Kanto T, Groh V, Spies T et al. (2003). Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int J Cancer 104: 354–361.

    CAS  PubMed  Google Scholar 

  • Kaiser BK, Yim D, Chow IT, Gonzalez S, Dai Z, Mann HH et al. (2007). Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 447: 482–486.

    CAS  PubMed  Google Scholar 

  • Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ et al. (1998). Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95: 7556–7561.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karlhofer FM, Ribaudo RK, Yokoyama WM . (1992). MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358: 66–70.

    CAS  PubMed  Google Scholar 

  • Karre K, Ljunggren HG, Piontek G, Kiessling R . (1986). Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319: 675–678.

    CAS  PubMed  Google Scholar 

  • Kelley J, Walter L, Trowsdale J . (2005). Comparative genomics of natural killer cell receptor gene clusters. PLoS Genet 1: 129–139.

    CAS  PubMed  Google Scholar 

  • Kiessling R, Klein E, Pross H, Wigzell H . (1975a). ‘Natural’ killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 5: 117–121.

    CAS  PubMed  Google Scholar 

  • Kiessling R, Klein E, Wigzell H . (1975b). ‘Natural’ killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5: 112–117.

    CAS  PubMed  Google Scholar 

  • Kim S, Iizuka K, Aguila HL, Weissman IL, Yokoyama WM . (2000). In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc Natl Acad Sci USA 97: 2731–2736.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L et al. (2005). Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436: 709–713.

    CAS  PubMed  Google Scholar 

  • Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ et al. (2007). Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450: 903–907.

    CAS  PubMed  Google Scholar 

  • Kubin M, Cassiano L, Chalupny J, Chin W, Cosman D, Fanslow W et al. (2001). ULBP1, 2, 3: novel MHC class I-related molecules that bind to human cytomegalovirus glycoprotein UL16, activate NK cells. Eur J Immunol 31: 1428–1437.

    CAS  PubMed  Google Scholar 

  • Lanier LL, Le AM, Phillips JH, Warner NL, Babcock GF . (1983). Subpopulations of human natural killer cells defined by expression of the Leu-7 (HNK-1) and Leu-11 (NK-15) antigens. J Immunol 131: 1789–1796.

    CAS  PubMed  Google Scholar 

  • Lanier LL . (1998). NK cell receptors. Annu Rev Immunol 16: 359–393.

    CAS  PubMed  Google Scholar 

  • Lanier LL . (2001). A renaissance for the tumor immunosurveillance hypothesis. Nat Med 7: 1178–1180.

    CAS  PubMed  Google Scholar 

  • Lanier LL . (2005). NK cell recognition. Annu Rev Immunol 23: 225–274.

    CAS  PubMed  Google Scholar 

  • Lee JC, Lee KM, Kim DW, Heo DS . (2004). Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 172: 7335–7340.

    CAS  PubMed  Google Scholar 

  • Lee N, Llano M, Carretero M, Ishitani A, Navarro F, Lopez-Botet M et al. (1998). HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci USA 95: 5199–5204.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, McDermott G, Strong RK . (2002). Crystal structures of RAE-1beta and its complex with the activating immunoreceptor NKG2D. Immunity 16: 77–86.

    CAS  PubMed  Google Scholar 

  • Li P, Morris DL, Willcox BE, Steinle A, Spies T, Strong RK . (2001). Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA. Nat Immunol 2: 443–451.

    CAS  PubMed  Google Scholar 

  • Lieberman J . (2003). The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol 3: 361–370.

    CAS  PubMed  Google Scholar 

  • Ljunggren HG, Karre K . (1985). Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med 162: 1745–1759.

    CAS  PubMed  Google Scholar 

  • Ljunggren HG, Karre K . (1990). In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11: 237–244.

    CAS  PubMed  Google Scholar 

  • Long EO, Burshtyn DN, Clark WP, Peruzzi M, Rajagopalan S, Rojo S et al. (1997). Killer cell inhibitory receptors: diversity, specificity, and function. Immunol Rev 155: 135–144.

    CAS  PubMed  Google Scholar 

  • Ma CS, Nichols KE, Tangye SG . (2007). Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu Rev Immunol 25: 337–379.

    CAS  PubMed  Google Scholar 

  • Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y et al. (2001). Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409: 1055–1060.

    CAS  PubMed  Google Scholar 

  • Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A et al. (2004). Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5: 1260–1265.

    CAS  PubMed  Google Scholar 

  • McMahon CW, Raulet DH . (2001). Expression and function of NK cell receptors in CD8+ T cells. Curr Opin Immunol 13: 465–470.

    CAS  PubMed  Google Scholar 

  • Mocikat R, Braumuller H, Gumy A, Egeter O, Ziegler H, Reusch U et al. (2003). Natural killer cells activated by MHC class I(low) targets prime dendritic cells to induce protective CD8T cell responses. Immunity 19: 561–569.

    CAS  PubMed  Google Scholar 

  • Molinero LL, Fuertes MB, Rabinovich GA, Fainboim L, Zwirner NW . (2002). Activation-induced expression of MICA on T lymphocytes involves engagement of CD3 and CD28. J Leukoc Biol 71: 791–797.

    CAS  PubMed  Google Scholar 

  • Moretta A, Bottino C, Vitale M, Pende D, Biassoni R, Mingari MC et al. (1996). Receptors for HLA class-I molecules in human natural killer cells. Annu Rev Immunol 14: 619–648.

    CAS  PubMed  Google Scholar 

  • Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC et al. (2001). Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19: 197–223.

    CAS  PubMed  Google Scholar 

  • Nakajima H, Cella M, Bouchon A, Grierson HL, Lewis J, Duckett CS et al. (2000). Patients with X-linked lymphoproliferative disease have a defect in 2B4 receptor-mediated NK cell cytotoxicity. Eur J Immunol 30: 3309–3318.

    CAS  PubMed  Google Scholar 

  • Nedvetzki S, Sowinski S, Eagle RA, Harris J, Vely F, Pende D et al. (2007). Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses. Blood 109: 3776–3785.

    CAS  PubMed  Google Scholar 

  • Nomura M, Zou Z, Joh T, Takihara Y, Matsuda Y, Shimada K . (1996). Genomic structures and characterization of Rae1 family members encoding GPI-anchored cell surface proteins and expressed predominantly in embryonic mouse brain. J Biochem (Tokyo) 120: 987–995.

    CAS  Google Scholar 

  • Nowbakht P, Ionescu MC, Rohner A, Kalberer CP, Rossy E, Mori L et al. (2005). Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 105: 3615–3622.

    CAS  PubMed  Google Scholar 

  • Nutt SL, Brady J, Hayakawa Y, Smyth MJ . (2004). Interleukin 21: a key player in lymphocyte maturation. Crit Rev Immunol 24: 239–250.

    CAS  PubMed  Google Scholar 

  • O'Callaghan CA, Cerwenka A, Willcox BE, Lanier LL, Bjorkman PJ . (2001). Molecular competition for NKG2D: H60 and RAE1 compete unequally for NKG2D with dominance of H60. Immunity 15: 201–211.

    CAS  PubMed  Google Scholar 

  • Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, Tigelaar RE et al. (2005). Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 6: 928–937.

    CAS  PubMed  Google Scholar 

  • Pardoll DM . (2001). Immunology. Stress, NK receptors, and immune surveillance. Science 294: 534–536.

    CAS  PubMed  Google Scholar 

  • Parham P . (2005). MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 5: 201–214.

    CAS  PubMed  Google Scholar 

  • Parolini S, Bottino C, Falco M, Augugliaro R, Giliani S, Franceschini R et al. (2000). X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein–Barr virus-infected cells. J Exp Med 192: 337–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pende D, Bottino C, Castriconi R, Cantoni C, Marcenaro S, Rivera P et al. (2005). PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol Immunol 42: 463–469.

    CAS  PubMed  Google Scholar 

  • Pende D, Cantoni C, Rivera P, Vitale M, Castriconi R, Marcenaro S et al. (2001). Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. Eur J Immunol 31: 1076–1086.

    CAS  PubMed  Google Scholar 

  • Pende D, Castriconi R, Romagnani P, Spaggiari GM, Marcenaro S, Dondero A et al. (2006). Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer–dendritic cell interaction. Blood 107: 2030–2036.

    CAS  PubMed  Google Scholar 

  • Pierson BA, Miller JS . (1996). CD56+bright and CD56+dim natural killer cells in patients with chronic myelogenous leukemia progressively decrease in number, respond less to stimuli that recruit clonogenic natural killer cells, and exhibit decreased proliferation on a per cell basis. Blood 88: 2279–2287.

    CAS  PubMed  Google Scholar 

  • Pogge von Strandmann E, Simhadri VR, von Tresckow B, Sasse S, Reiners KS, Hansen HP et al. (2007). Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity 27: 965–974.

    CAS  PubMed  Google Scholar 

  • Radaev S, Rostro B, Brooks AG, Colonna M, Sun PD . (2001). Conformational plasticity revealed by the cocrystal structure of NKG2D and its class I MHC-like ligand ULBP3. Immunity 15: 1039–1049.

    CAS  PubMed  Google Scholar 

  • Radosavljevic M, Cuillerier B, Wilson MJ, Clement O, Wicker S, Gilfillan S et al. (2002). A cluster of ten novel MHC class I related genes on human chromosome 6q24.2–q25.3. Genomics 79: 114–123.

    CAS  PubMed  Google Scholar 

  • Raulet DH, Vance RE . (2006). Self-tolerance of natural killer cells. Nat Rev Immunol 6: 520–531.

    CAS  PubMed  Google Scholar 

  • Raulet DH . (2003). Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3: 781–790.

    CAS  PubMed  Google Scholar 

  • Raulet DH . (2004). Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol 5: 996–1002.

    CAS  PubMed  Google Scholar 

  • Roberts AI, Lee L, Schwarz E, Groh V, Spies T, Ebert EC et al. (2001). NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J Immunol 167: 5527–5530.

    CAS  PubMed  Google Scholar 

  • Rosen DB, Araki M, Hamerman JA, Chen T, Yamamura T, Lanier LL . (2004). A structural basis for the association of DAP12 with mouse, but not human, NKG2D. J Immunol 173: 2470–2478.

    CAS  PubMed  Google Scholar 

  • Rosen DB, Bettadapura J, Alsharifi M, Mathew PA, Warren HS, Lanier LL . (2005). Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J Immunol 175: 7796–7799..

    CAS  PubMed  Google Scholar 

  • Rouas-Freiss N, Moreau P, Ferrone S, Carosella ED . (2005). HLA-G proteins in cancer: do they provide tumor cells with an escape mechanism? Cancer Res 65: 10139–10144.

    CAS  PubMed  Google Scholar 

  • Ruggeri L, Mancusi A, Burchielli E, Aversa F, Martelli MF, Velardi A . (2007). Natural killer cell alloreactivity in allogeneic hematopoietic transplantation. Curr Opin Oncol 19: 142–147.

    PubMed  Google Scholar 

  • Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG et al. (2003). Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102: 1389–1396.

    CAS  PubMed  Google Scholar 

  • Salih HR, Rammensee HG, Steinle A . (2002). Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol 169: 4098–4102.

    CAS  PubMed  Google Scholar 

  • Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ et al. (2001). IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410: 1107–1111.

    CAS  PubMed  Google Scholar 

  • Smyth MJ, Hayakawa Y, Takeda K, Yagita H . (2002). New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2: 850–861.

    CAS  PubMed  Google Scholar 

  • Smyth MJ, Swann J, Cretney E, Zerafa N, Yokoyama WM, Hayakawa Y . (2005). NKG2D function protects the host from tumor initiation. J Exp Med 202: 583–588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth MJ, Swann J, Kelly JM, Cretney E, Yokoyama WM, Diefenbach A et al. (2004). NKG2D recognition and perforin effector function mediate effective cytokine immunotherapy of cancer. J Exp Med 200: 1325–1335.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinle A, Li P, Morris DL, Groh V, Lanier LL, Strong RK et al. (2001). Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 53: 279–287.

    CAS  PubMed  Google Scholar 

  • Street SE, Hayakawa Y, Zhan Y, Lew AM, MacGregor D, Jamieson AM et al. (2004). Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells. J Exp Med 199: 879–884.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland CL, Chalupny NJ, Schooley K, VandenBos T, Kubin M, Cosman D . (2002). UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells. J Immunol 168: 671–679.

    CAS  PubMed  Google Scholar 

  • Swann JB, Smyth MJ . (2007). Immune surveillance of tumors. J Clin Invest 117: 1137–1146.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tahara-Hanaoka S, Shibuya K, Kai H, Miyamoto A, Morikawa Y, Ohkochi N et al. (2006). Tumor rejection by the poliovirus receptor family ligands of the DNAM-1 (CD226) receptor. Blood 107: 1491–1496.

    CAS  PubMed  Google Scholar 

  • Takaki R, Watson SR, Lanier LL . (2006). DAP12: an adapter protein with dual functionality. Immunol Rev 214: 118–129.

    CAS  PubMed  Google Scholar 

  • Upshaw JL, Arneson LN, Schoon RA, Dick CJ, Billadeau DD, Leibson PJ . (2006). NKG2D-mediated signaling requires a DAP10-bound Grb2-Vav1 intermediate and phosphatidylinositol-3-kinase in human natural killer cells. Nat Immunol 7: 524–532.

    CAS  PubMed  Google Scholar 

  • Urosevic M, Dummer R . (2008). Human leukocyte antigen-G and cancer immunoediting. Cancer Res 68: 627–630.

    CAS  PubMed  Google Scholar 

  • Vetter CS, Groh V, thor Strathen P, Spies T, Brocker EB, Becker JC . (2002). Expression of stress-induced MHC class I related chain molecules on human melanoma. J Invest Dermatol 118: 600–605.

    CAS  PubMed  Google Scholar 

  • Villegas FR, Coca S, Villarrubia VG, Jimenez R, Chillon MJ, Jareno J et al. (2002). Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35: 23–28.

    PubMed  Google Scholar 

  • Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E et al. (1998). NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med 187: 2065–2072.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vivier E, Anfossi N . (2004). Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nat Rev Immunol 4: 190–198.

    CAS  PubMed  Google Scholar 

  • Voskoboinik I, Smyth MJ, Trapani JA . (2006). Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6: 940–952.

    CAS  PubMed  Google Scholar 

  • Waldhauer I, Steinle A . (2006). Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res 66: 2520–2526.

    CAS  PubMed  Google Scholar 

  • Walzer T, Jaeger S, Chaix J, Vivier E . (2007). Natural killer cells: from CD3(−)NKp46(+) to post-genomics meta-analyses. Curr Opin Immunol 19: 365–372.

    CAS  PubMed  Google Scholar 

  • Welte S, Kuttruff S, Waldhauer I, Steinle A . (2006). Mutual activation of natural killer cells and monocytes mediated by NKp80–AICL interaction. Nat Immunol 7: 1334–1342.

    CAS  PubMed  Google Scholar 

  • Wiemann K, Mittrucker HW, Feger U, Welte SA, Yokoyama WM, Spies T et al. (2005). Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo. J Immunol 175: 720–729.

    CAS  PubMed  Google Scholar 

  • Wu J, Lanier LL . (2003). Natural killer cells and cancer. Adv Cancer Res 90: 127–156.

    CAS  PubMed  Google Scholar 

  • Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL et al. (1999). An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285: 730–732.

    CAS  PubMed  Google Scholar 

  • Wu JD, Higgins LM, Steinle A, Cosman D, Haugk K, Plymate SR . (2004). Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest 114: 560–568.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama WM, Kim S . (2006). How do natural killer cells find self to achieve tolerance? Immunity 24: 249–257.

    CAS  PubMed  Google Scholar 

  • Yokoyama WM, Plougastel BF . (2003). Immune functions encoded by the natural killer gene complex. Nat Rev Immunol 3: 304–316.

    CAS  PubMed  Google Scholar 

  • Yokoyama WM, Seaman WE . (1993). The Ly-49 and NKR-P1 gene families encoding lectin-like receptors on natural killer cells: the NK gene complex. Annu Rev Immunol 11: 613–635.

    CAS  PubMed  Google Scholar 

  • Yokoyama WM . (1993). Recognition structures on natural killer cells. Curr Opin Immunol 5: 67–73.

    CAS  PubMed  Google Scholar 

  • Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B . (1998). Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188: 2375–2380.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zamai L, Ponti C, Mirandola P, Gobbi G, Papa S, Galeotti L et al. (2007). NK cells and cancer. J Immunol 178: 4011–4016.

    CAS  PubMed  Google Scholar 

  • Zitvogel L, Tesniere A, Kroemer G . (2006). Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6: 715–727.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologise to all investigators whose studies were not cited in this article due to space constraints. IW is supported by the Wilhelm Sander-Stiftung and Deutsche Krebshilfe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Steinle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldhauer, I., Steinle, A. NK cells and cancer immunosurveillance. Oncogene 27, 5932–5943 (2008). https://doi.org/10.1038/onc.2008.267

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.267

Keywords

This article is cited by

Search

Quick links