Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The mechanism of action of BCG therapy for bladder cancer—a current perspective

Subjects

Key Points

  • Despite nearly four decades of clinical experience with Bacillus Calmette–Guérin (BCG) for bladder cancer, the mechanism of its therapeutic effect is still under investigation

  • The requirements for effective BCG therapy include an intact immune system, live BCG, and close contact of BCG with bladder cancer cells

  • Important constituents of the cellular inflammatory response to BCG include CD4+ and CD8+ lymphocytes, natural killer cells, and granulocytes

  • Important elements of the humoral immune response to BCG include TRAIL (tumour necrosis factor-related apoptosis-inducing ligand), IL-2, IL-8, IL-18, IL-12, interferon (IFN)-γ, and tumour necrosis factor (TNF)

  • Bladder cancer cells and benign urothelial cells might have a role in the initial recognition and processing of BCG, leading to immune system recruitment

  • Future investigation will hopefully lead to the discovery of clinically useful predictors of response to BCG and development of recombinant BCG strains with improved efficacy and decreased toxicity

Abstract

Bacillus Calmette–Guérin (BCG) has been used to treat non-muscle-invasive bladder cancer for more than 30 years. It is one of the most successful biotherapies for cancer in use. Despite long clinical experience with BCG, the mechanism of its therapeutic effect is still under investigation. Available evidence suggests that urothelial cells (including bladder cancer cells themselves) and cells of the immune system both have crucial roles in the therapeutic antitumour effect of BCG. The possible involvement of bladder cancer cells includes attachment and internalization of BCG, secretion of cytokines and chemokines, and presentation of BCG and/or cancer cell antigens to cells of the immune system. Immune system cell subsets that have potential roles in BCG therapy include CD4+ and CD8+ lymphocytes, natural killer cells, granulocytes, macrophages, and dendritic cells. Bladder cancer cells are killed through direct cytotoxicity by these cells, by secretion of soluble factors such as TRAIL (tumour necrosis factor-related apoptosis-inducing ligand), and, to some degree, by the direct action of BCG. Several gaps still exist in our knowledge that should be addressed in future efforts to understand this biotherapy of cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tentative model of the mechanism of action of BCG in bladder cancer.

Similar content being viewed by others

References

  1. Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin. Orthop. Relat. Res. 262, 3–11 (1991).

    Google Scholar 

  2. Coley, W. B. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc. R. Soc. Med. 3, 1–48 (1910).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sharma, P., Old, L. J. & Allison, J. P. Immunotherapeutic strategies for high-risk bladder cancer. Semin. Oncol. 34, 165–172 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pearl, R. On the pathological relations between cancer and tuberculosis. Exp. Biol. Med. (Maywood) 26, 73–75 (1928).

    Article  Google Scholar 

  5. Old, L. J., Clarke, D. A. & Benacerraf, B. Effect of Bacillus Calmette-Guerin infection on transplanted tumours in the mouse. Nature 184 (Suppl. 5), 291–292 (1959).

    Article  PubMed  Google Scholar 

  6. Carswell, E. A. et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl Acad. Sci. USA 72, 3666–3670 (1975).

    Article  CAS  Google Scholar 

  7. Mathé, G. et al. Active immunotherapy for acute lymphoblastic leukaemia. Lancet 1, 697–699 (1969).

    Article  PubMed  Google Scholar 

  8. Morton, D. L. et al. BCG immunotherapy of malignant melanoma: summary of a seven-year experience. Ann. Surg. 180, 635–643 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morales, A., Eidinger, D. & Bruce, A. W. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J. Urol. 116, 180–183 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. Hall, M. C. et al. Guideline for the management of nonmuscle invasive bladder cancer (stages Ta, T1, and Tis): 2007 update. J. Urol. 178, 2314–2330 (2007).

    Article  PubMed  Google Scholar 

  11. Babjuk, M. et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update. Eur. Urol. 59, 997–1008 (2011).

    Article  PubMed  Google Scholar 

  12. Han, R. F. & Pan, J. G. Can intravesical bacillus Calmette-Guerin reduce recurrence in patients with superficial bladder cancer? A meta-analysis of randomized trials. Urology 67, 1216–1223 (2006).

    Article  PubMed  Google Scholar 

  13. Shelley, M. D. et al. A systematic review of intravesical bacillus Calmette-Guerin plus transurethral resection vs transurethral resection alone in Ta and T1 bladder cancer. BJU Int. 88, 209–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Sylvester, R. J., van der Meijden, A. P. & Lamm, D. L. Intravesical bacillus Calmette-Guerin reduces the risk of progression in patients with superficial bladder cancer: a meta-analysis of the published results of randomized clinical trials. J. Urol. 168, 1964–1970 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Shang, P. F. et al. Intravesical Bacillus Calmette-Guerin versus epirubicin for Ta and T1 bladder cancer. Cochrane Database of Systematic Reviews, Art. No.: CD006885. http://dx.doi.org/10.1002/14651858.CD006885.pub2.

  16. Shelley, M. D. et al. Intravesical bacillus Calmette-Guérin is superior to mitomycin C in reducing tumour recurrence in high-risk superficial bladder cancer: a meta-analysis of randomized trials. BJU Int. 93, 485–490 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Zbar, B. & Rapp, H. J. Immunotherapy of guinea pig cancer with BCG. Cancer 34 (Suppl.), 1532–1540 (1974).

    Article  Google Scholar 

  18. Morton, D., Eilber, F. R., Malmgren, R. A. & Wood, W. C. Immunological factors which influence response to immunotherapy in malignant melanoma. Surgery 68, 158–163 (1970).

    CAS  PubMed  Google Scholar 

  19. Zbar, B. & Tanaka, T. Immunotherapy of cancer: regression of tumors after intralesional injection of living Mycobacterium bovis. Science 172, 271–273 (1971).

    Article  CAS  PubMed  Google Scholar 

  20. Kelley, D. R. et al. Intravesical bacillus Calmette-Guerin therapy for superficial bladder cancer: effect of bacillus Calmette-Guerin viability on treatment results. J. Urol. 134, 48–53 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Biot, C. et al. Preexisting BCG-specific T cells improve intravesical immunotherapy for bladder cancer. Sci. Transl. Med. 4, 137ra72 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Zbar, B., Bernstein, I. D., Bartlett, G. L., Hanna, M. G. Jr & Rapp, H. J. Immunotherapy of cancer: regression of intradermal tumors and prevention of growth of lymph node metastases after intralesional injection of living Mycobacterium bovis. J. Natl Cancer Inst. 49, 119–130 (1972).

    CAS  PubMed  Google Scholar 

  23. Latchamsetty, K. C. & Porter, C. R. Treatment of upper tract urothelial carcinoma: a review of surgical and adjuvant therapy. Rev. Urol. 8, 61–70 (2006).

    PubMed  PubMed Central  Google Scholar 

  24. Palou, J. et al. ICUD-EAU International Consultation on Bladder Cancer 2012: urothelial carcinoma of the prostate. Eur. Urol. 63, 81–87 (2013).

    Article  PubMed  Google Scholar 

  25. De Boer, E. C. et al. Presence of activated lymphocytes in the urine of patients with superficial bladder cancer after intravesical immunotherapy with bacillus Calmette-Guerin. Cancer Immunol. Immunother. 33, 411–416 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Bohle, A., Gerdes, J., Ulmer, A. J., Hofstetter, A. G. & Flad, H. D. Effects of local bacillus Calmette-Guerin therapy in patients with bladder carcinoma on immunocompetent cells of the bladder wall. J. Urol. 144, 53–58 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. De Boer, E. C. et al. Induction of urinary interleukin-1 (IL-1), IL-2, IL-6, and tumour necrosis factor during intravesical immunotherapy with bacillus Calmette-Guerin in superficial bladder cancer. Cancer Immunol. Immunother. 34, 306–312 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. de Boer, E. C. et al. Role of interleukin-8 in onset of the immune response in intravesical BCG therapy for superficial bladder cancer. Urol. Res. 25, 31–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Alexandroff, A., Jackson, A., Skibinska, A. & James, K. Production of IL-5, a classical T(H)2 cytokine, following bacillus Calmette guerin immunotherapy of bladder cancer. Int. J. Oncol. 9, 179–182 (1996).

    CAS  PubMed  Google Scholar 

  30. O'Donnell, M. A. et al. Role of IL-12 in the induction and potentiation of IFN-gamma in response to bacillus Calmette-Guerin. J. Immunol. 163, 4246–4252 (1999).

    CAS  PubMed  Google Scholar 

  31. Jackson, A. M. et al. Changes in urinary cytokines and soluble intercellular adhesion molecule-1 (ICAM-1) in bladder cancer patients after bacillus Calmette-Guerin (BCG) immunotherapy. Clin. Exp. Immunol. 99, 369–375 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eto, M. et al. Importance of urinary interleukin-18 in intravesical immunotherapy with bacillus calmette-guerin for superficial bladder tumors. Urol. Int. 75, 114–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Luo, Y., Chen, X. & O'Donnell, M. A. Mycobacterium bovis bacillus Calmette-Guerin (BCG) induces human CC- and CXC-chemokines in vitro and in vivo. Clin. Exp. Immunol. 147, 370–378 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lage, J. M., Bauer, W. C., Kelley, D. R., Ratliff, T. L. & Catalona, W. J. Histological parameters and pitfalls in the interpretation of bladder biopsies in bacillus Calmette-Guerin treatment of superficial bladder cancer. J. Urol. 135, 916–919 (1986).

    Article  CAS  PubMed  Google Scholar 

  35. Ratliff, T. L., Gillen, D. & Catalona, W. J. Requirement of a thymus dependent immune response for BCG-mediated antitumor activity. J. Urol. 137, 155–158 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Boccafoschi, C. et al. Immunophenotypic characterization of the bladder mucosa infiltrating lymphocytes after intravesical BCG treatment for superficial bladder carcinoma. Eur. Urol. 21, 304–308 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Ratliff, T. L., Ritchey, J. K., Yuan, J. J., Andriole, G. L. & Catalona, W. J. T-cell subsets required for intravesical BCG immunotherapy for bladder cancer. J. Urol. 150, 1018–1023 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Ratliff, T. L., Shapiro, A. & Catalona, W. J. Inhibition of murine bladder tumor growth by bacille Calmette-Guerin: lack of a role of natural killer cells. Clin. Immunol. Immunopathol. 41, 108–115 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Shapiro, A., Ratliff, T. L., Oakley, D. M. & Catalona, W. J. Reduction of bladder tumor growth in mice treated with intravesical Bacillus Calmette-Guerin and its correlation with Bacillus Calmette-Guerin viability and natural killer cell activity. Cancer Res. 43, 1611–1615 (1983).

    CAS  PubMed  Google Scholar 

  40. Sonoda, T., Sugimura, K., Ikemoto, S., Kawashima, H. & Nakatani, T. Significance of target cell infection and natural killer cells in the anti-tumor effects of bacillus Calmette-Guerin in murine bladder cancer. Oncol. Rep. 17, 1469–1474 (2007).

    PubMed  Google Scholar 

  41. Brandau, S. et al. NK cells are essential for effective BCG immunotherapy. Int. J. Cancer 92, 697–702 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Brandau, S. & Bohle, A. Activation of natural killer cells by Bacillus Calmette-Guerin. Eur. Urol. 39, 518–524 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Suttmann, H. et al. Mechanisms of bacillus Calmette-Guerin mediated natural killer cell activation. J. Urol. 172, 1490–1495 (2004).

    Article  PubMed  Google Scholar 

  44. Brandau, S. et al. Perforin-mediated lysis of tumor cells by Mycobacterium bovis Bacillus Calmette-Guerin-activated killer cells. Clin. Cancer Res. 6, 3729–3738 (2000).

    CAS  PubMed  Google Scholar 

  45. Siracusano, S. et al. The role of granulocytes following intravesical BCG prophylaxis. Eur. Urol. 51, 1589–1597 (2007).

    Article  PubMed  Google Scholar 

  46. Suttmann, H. et al. Neutrophil granulocytes are required for effective Bacillus Calmette-Guerin immunotherapy of bladder cancer and orchestrate local immune responses. Cancer Res. 66, 8250–8257 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, S. & El-Deiry, W. S. TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22, 8628–8633 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Prescott, S., James, K., Hargreave, T. B., Chisholm, G. D. & Smyth, J. F. Intravesical Evans strain BCG therapy: quantitative immunohistochemical analysis of the immune response within the bladder wall. J. Urol. 147, 1636–1642 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Pryor, K. et al. Bacillus Calmette-Guerin (BCG) enhances monocyte- and lymphocyte-mediated bladder tumour cell killing. Br. J. Cancer 71, 801–807 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamada, H., Matsumoto, S., Matsumoto, T., Yamada, T. & Yamashita, U. Enhancing effect of an inhibitor of nitric oxide synthesis on bacillus Calmette-Guerin-induced macrophage cytotoxicity against murine bladder cancer cell line MBT-2 in vitro. Jpn J. Cancer Res. 91, 534–542 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yamada, H., Matsumoto, S., Matsumoto, T., Yamada, T. & Yamashita, U. Murine IL-2 secreting recombinant Bacillus Calmette-Guerin augments macrophage-mediated cytotoxicity against murine bladder cancer MBT-2. J. Urol. 164, 526–531 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Luo, Y., Yamada, H., Evanoff, D. P. & Chen, X. Role of Th1-stimulating cytokines in bacillus Calmette-Guerin (BCG)-induced macrophage cytotoxicity against mouse bladder cancer MBT-2 cells. Clin. Exp. Immunol. 146, 181–188 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Luo, Y., Han, R., Evanoff, D. P. & Chen, X. Interleukin-10 inhibits Mycobacterium bovis bacillus Calmette-Guerin (BCG)-induced macrophage cytotoxicity against bladder cancer cells. Clin. Exp. Immunol. 160, 359–368 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shintani, Y. et al. Intravesical instillation therapy with bacillus Calmette-Guerin for superficial bladder cancer: study of the mechanism of bacillus Calmette-Guerin immunotherapy. Int. J. Urol. 14, 140–146 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Atkinson, S., Valadas, E., Smith, S. M., Lukey, P. T. & Dockrell, H. M. Monocyte-derived macrophage cytokine responses induced by M. bovis BCG. Tuber. Lung Dis. 80, 197–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, J., Wakeham, J., Harkness, R. & Xing, Z. Macrophages are a significant source of type 1 cytokines during mycobacterial infection. J. Clin. Invest. 103, 1023–1029 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Takayama, H. et al. Increased infiltration of tumor associated macrophages is associated with poor prognosis of bladder carcinoma in situ after intravesical bacillus Calmette-Guerin instillation. J. Urol. 181, 1894–1900 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Ayari, C. et al. Bladder tumor infiltrating mature dendritic cells and macrophages as predictors of response to bacillus Calmette-Guerin immunotherapy. Eur. Urol. 55, 1386–1395 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Hao, N. B. et al. Macrophages in tumor microenvironments and the progression of tumors. Clin. Dev. Immunol. 2012, 948098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beatty, J. D., Islam, S., North, M. E., Knight, S. C. & Ogden, C. W. Urine dendritic cells: a noninvasive probe for immune activity in bladder cancer? BJU Int. 94, 1377–1383 (2004).

    Article  PubMed  Google Scholar 

  61. Naoe, M. et al. Bacillus Calmette-Guerin-pulsed dendritic cells stimulate natural killer T cells and gammadeltaT cells. Int. J. Urol. 14, 532–538 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Higuchi, T. et al. A possible mechanism of intravesical BCG therapy for human bladder carcinoma: involvement of innate effector cells for the inhibition of tumor growth. Cancer Immunol. Immunother. 58, 1245–1255 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Hurwitz, A. A. & Watkins, S. K. Immune suppression in the tumor microenvironment: a role for dendritic cell-mediated tolerization of T cells. Cancer Immunol. Immunother. 61, 289–293 (2012).

    Article  PubMed  Google Scholar 

  64. McAveney, K. M., Gomella, L. G. & Lattime, E. C. Induction of TH1- and TH2-associated cytokine mRNA in mouse bladder following intravesical growth of the murine bladder tumor MB49 and BCG immunotherapy. Cancer Immunol. Immunother. 39, 401–406 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Luo, Y., Chen, X. & O'Donnell, M. A. Role of Th1 and Th2 cytokines in BCG-induced IFN-gamma production: cytokine promotion and simulation of BCG effect. Cytokine 21, 17–26 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Riemensberger, J., Bohle, A. & Brandau, S. IFN-gamma and IL-12 but not IL-10 are required for local tumour surveillance in a syngeneic model of orthotopic bladder cancer. Clin. Exp. Immunol. 127, 20–26 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nepple, K. G., Lightfoot, A. J., Rosevear, H. M., O'Donnell, M. A. & Lamm, D. L. Bacillus Calmette-Guerin with or without interferon alpha-2b and megadose versus recommended daily allowance vitamins during induction and maintenance intravesical treatment of nonmuscle invasive bladder cancer. J. Urol. 184, 1915–1919 (2010).

    Article  PubMed  Google Scholar 

  68. Luo, Y. et al. Recombinant Mycobacterium bovis bacillus Calmette-Guerin (BCG) expressing mouse IL-18 augments Th1 immunity and macrophage cytotoxicity. Clin. Exp. Immunol. 137, 24–34 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, W., O'Donnell, M. A., Chen, X., Han, R. & Luo, Y. Recombinant bacillus Calmette-Guerin (BCG) expressing interferon-alpha 2B enhances human mononuclear cell cytotoxicity against bladder cancer cell lines in vitro. Cancer Immunol. Immunother. 58, 1647–1655 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Arnold, J., de Boer, E. C., O'Donnell, M. A., Bohle, A. & Brandau, S. Immunotherapy of experimental bladder cancer with recombinant BCG expressing interferon-gamma. J. Immunother. 27, 116–123 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Bockholt, N. A. et al. Anti-interleukin-10R1 monoclonal antibody enhances bacillus Calmette-Guerin induced T-helper type 1 immune responses and antitumor immunity in a mouse orthotopic model of bladder cancer. J. Urol. 187, 2228–2235 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Ludwig, A. T. et al. Tumor necrosis factor-related apoptosis-inducing ligand: a novel mechanism for Bacillus Calmette-Guerin-induced antitumor activity. Cancer Res. 64, 3386–3390 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Kemp, T. J. et al. Neutrophil stimulation with Mycobacterium bovis bacillus Calmette-Guerin (BCG) results in the release of functional soluble TRAIL/Apo-2L. Blood 106, 3474–3482 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zuiverloon, T. C. et al. Markers predicting response to bacillus Calmette-Guerin immunotherapy in high-risk bladder cancer patients: a systematic review. Eur. Urol. 61, 128–145 (2012).

    Article  PubMed  Google Scholar 

  75. Saint, F. et al. Prognostic value of a T helper 1 urinary cytokine response after intravesical bacillus Calmette-Guerin treatment for superficial bladder cancer. J. Urol. 167, 364–367 (2002).

    Article  PubMed  Google Scholar 

  76. Watanabe, E. et al. Urinary interleukin-2 may predict clinical outcome of intravesical bacillus Calmette-Guerin immunotherapy for carcinoma in situ of the bladder. Cancer Immunol. Immunother. 52, 481–486 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. de Reijke, T. M., de Boer, E. C., Kurth, K. H. & Schamhart, D. H. Urinary cytokines during intravesical bacillus Calmette-Guerin therapy for superficial bladder cancer: processing, stability and prognostic value. J. Urol. 155, 477–482 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Kaempfer, R. et al. Prediction of response to treatment in superficial bladder carcinoma through pattern of interleukin-2 gene expression. J. Clin. Oncol. 14, 1778–1786 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Thalmann, G. N. et al. Urinary Interleukin-8 and 18 predict the response of superficial bladder cancer to intravesical therapy with bacillus Calmette-Guerin. J. Urol. 164, 2129–2133 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Sagnak, L. et al. Predictive value of urinary interleukin-8 cutoff point for recurrences after transurethral resection plus induction bacillus Calmette-Guerin treatment in non-muscle-invasive bladder tumors. Clin. Genitourin. Cancer 7, E16–E23 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Kumar, A., Dubey, D., Bansal, P., Mandhani, A. & Naik, S. Urinary interleukin-8 predicts the response of standard and low dose intravesical bacillus Calmette-Guerin (modified Danish 1331 strain) for superficial bladder cancer. J. Urol. 168, 2232–2235 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Jo, E. K. Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and NLRs. Curr. Opin. Infect. Dis. 21, 279–286 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Ayari, C., Bergeron, A., LaRue, H., Menard, C. & Fradet, Y. Toll-like receptors in normal and malignant human bladders. J. Urol. 185, 1915–1921 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Kleinnijenhuis, J., Oosting, M., Joosten, L. A., Netea, M. G. & Van Crevel, R. Innate immune recognition of Mycobacterium tuberculosis. Clin. Dev. Immunol. 2011, 405310 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Simons, M. P., Moore, J. M., Kemp, T. J. & Griffith, T. S. Identification of the mycobacterial subcomponents involved in the release of tumor necrosis factor-related apoptosis-inducing ligand from human neutrophils. Infect. Immun. 75, 1265–1271 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Tsuji, S. et al. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect. Immun. 68, 6883–6890 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kelley, D. R. et al. Prognostic value of purified protein derivative skin test and granuloma formation in patients treated with intravesical bacillus Calmette-Guerin. J. Urol. 135, 268–271 (1986).

    Article  CAS  PubMed  Google Scholar 

  88. Taniguchi, K. et al. Systemic immune response after intravesical instillation of bacille Calmette-Guerin (BCG) for superficial bladder cancer. Clin. Exp. Immunol. 115, 131–135 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ratliff, T. L., Palmer, J. O., McGarr, J. A. & Brown, E. J. Intravesical Bacillus Calmette-Guerin therapy for murine bladder tumors: initiation of the response by fibronectin-mediated attachment of Bacillus Calmette-Guerin. Cancer Res. 47, 1762–1766 (1987).

    CAS  PubMed  Google Scholar 

  90. Hudson, M. A., Brown, E. J., Ritchey, J. K. & Ratliff, T. L. Modulation of fibronectin-mediated Bacillus Calmette-Guerin attachment to murine bladder mucosa by drugs influencing the coagulation pathways. Cancer Res. 51, 3726–3732 (1991).

    CAS  PubMed  Google Scholar 

  91. Zhao, W. et al. Role of a bacillus Calmette-Guerin fibronectin attachment protein in BCG-induced antitumor activity. Int. J. Cancer 86, 83–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Coplen, D. E., Brown, E. J., McGarr, J. & Ratliff, T. L. Characterization of fibronectin attachment by a human transitional cell carcinoma line, T24. J. Urol. 145, 1312–1315 (1991).

    Article  CAS  PubMed  Google Scholar 

  93. Kavoussi, L. R., Brown, E. J., Ritchey, J. K. & Ratliff, T. L. Fibronectin-mediated Calmette-Guerin bacillus attachment to murine bladder mucosa. Requirement for the expression of an antitumor response. J. Clin. Invest. 85, 62–67 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schneider, B. et al. Specific binding of bacillus Calmette-Guerin to urothelial tumor cells in vitro. World J. Urol. 12, 337–344 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Bevers, R. F., Kurth, K. H. & Schamhart, D. H. Role of urothelial cells in BCG immunotherapy for superficial bladder cancer. Br. J. Cancer 91, 607–612 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pan, C. W., Shen, Z. J. & Ding, G. Q. The effect of intravesical instillation of antifibrinolytic agents on bacillus Calmette-Guerin treatment of superficial bladder cancer: a pilot study. J. Urol. 179, 1307–1311 (2008).

    Article  PubMed  Google Scholar 

  97. Bevers, R. F., De Boer, E. C., Kurth, K. & Schamhart, D. H. BCG internalization in human bladder cancer cell lines, especially with regard to cell surface expressed fibronectin. Aktuelle Urologie 31, 31–34 (2000).

    Google Scholar 

  98. Becich, M. J., Carroll, S. & Ratliff, T. L. Internalization of bacille Calmette-Guerin by bladder tumor cells. J. Urol. 145, 1316–1324 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Kuroda, K., Brown, E. J., Telle, W. B., Russell, D. G. & Ratliff, T. L. Characterization of the internalization of bacillus Calmette-Guerin by human bladder tumor cells. J. Clin. Invest. 91, 69–76 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Durek, C. et al. Bacillus-Calmette-Guerin (BCG) and 3D tumors: an in vitro model for the study of adhesion and invasion. J. Urol. 162, 600–605 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Ernst, J. D. Macrophage receptors for Mycobacterium tuberculosis. Infect. Immun. 66, 1277–1281 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Redelman-Sidi, G., Iyer, G., Solit, D. B. & Glickman, M. S. Oncogenic activation of Pak1-dependent pathway of macropinocytosis determines BCG entry into bladder cancer cells. Cancer Res. 73, 1156–1167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Huang, G., Redelman-Sidi, G., Rosen, N., Glickman, M. S. & Jiang, X. Inhibition of mycobacterial infection by the tumor suppressor PTEN. J. Biol. Chem. 287, 23196–23202 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Esuvaranathan, K. et al. Interleukin-6 production by bladder tumors is upregulated by BCG immunotherapy. J. Urol. 154, 572–575 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Bevers, R. F., de Boer, E. C., Kurth, K. H. & Schamhart, D. H. BCG-induced interleukin-6 upregulation and BCG internalization in well and poorly differentiated human bladder cancer cell lines. Eur. Cytokine Netw. 9, 181–186 (1998).

    CAS  PubMed  Google Scholar 

  106. Zhang, G. J. et al. Autocrine IL-6 production by human transitional carcinoma cells upregulates expression of the alpha5beta1 firbonectin receptor. J. Urol. 163, 1553–1559 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, Y., Khoo, H. E. & Esuvaranathan, K. Effects of bacillus Calmette-Guerin and interferon alpha-2B on cytokine production in human bladder cancer cell lines. J. Urol. 161, 977–983 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. de Reijke, T. M. et al. Cytokine production by the human bladder carcinoma cell line T24 in the presence of bacillus Calmette-Guerin (BCG). Urol. Res. 21, 349–352 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Lattime, E. C., Gomella, L. G. & McCue, P. A. Murine bladder carcinoma cells present antigen to BCG-specific CD4+ T-cells. Cancer Res. 52, 4286–4290 (1992).

    CAS  PubMed  Google Scholar 

  110. Jackson, A. M. et al. Induction of ICAM 1 expression on bladder tumours by BCG immunotherapy. J. Clin. Pathol. 47, 309–312 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Prescott, S. et al. HLA-DR expression by high grade superficial bladder cancer treated with BCG. Br. J. Urol. 63, 264–269 (1989).

    Article  CAS  PubMed  Google Scholar 

  112. el-Demiry, M. I. et al. Local immune responses after intravesical BCG treatment for carcinoma in situ. Br. J. Urol. 60, 543–548 (1987).

    Article  CAS  PubMed  Google Scholar 

  113. Ikeda, N., Toida, I., Iwasaki, A., Kawai, K. & Akaza, H. Surface antigen expression on bladder tumor cells induced by bacillus Calmette-Guerin (BCG): A role of BCG internalization into tumor cells. Int. J. Urol. 9, 29–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Videira, P. A. et al. Efficacy of bacille Calmette-Guerin immunotherapy predicted by expression of antigen-presenting molecules and chemokines. Urology 74, 944–950 (2009).

    Article  PubMed  Google Scholar 

  115. Chen, F., Zhang, G., Iwamoto, Y. & See, W. A. BCG directly induces cell cycle arrest in human transitional carcinoma cell lines as a consequence of integrin cross-linking. BMC Urol. 5, 8 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Jackson, A. et al. Bacillus-calmette-guerin (bcg) organisms directly alter the growth of bladder-tumor cells. Int. J. Oncol. 5, 697–703 (1994).

    CAS  PubMed  Google Scholar 

  117. Pook, S. H., Rahmat, J. N., Esuvaranathan, K. & Mahendran, R. Internalization of Mycobacterium bovis, Bacillus Calmette Guerin, by bladder cancer cells is cytotoxic. Oncol. Rep. 18, 1315–1320 (2007).

    CAS  PubMed  Google Scholar 

  118. See, W. A. et al. Bacille-Calmette Guerin induces caspase-independent cell death in urothelial carcinoma cells together with release of the necrosis-associated chemokine high molecular group box protein 1. BJU Int. 103, 1714–1720 (2009).

    Article  PubMed  Google Scholar 

  119. Sandes, E. et al. Cathepsin B is involved in the apoptosis intrinsic pathway induced by Bacillus Calmette-Guerin in transitional cancer cell lines. Int. J. Mol. Med. 20, 823–828 (2007).

    CAS  PubMed  Google Scholar 

  120. Sasaki, A., Kudoh, S., Mori, K., Takahashi, N. & Suzuki, T. Are BCG effects against urinary bladder carcinoma cell line T24 correlated with apoptosis in vitro? Urol. Int. 59, 142–148 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.R.-S. researched the data for the article, provided a substantial contribution to discussion of the content, and wrote the article. M.S.G. and B.H.B. contributed equally to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Gil Redelman-Sidi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redelman-Sidi, G., Glickman, M. & Bochner, B. The mechanism of action of BCG therapy for bladder cancer—a current perspective. Nat Rev Urol 11, 153–162 (2014). https://doi.org/10.1038/nrurol.2014.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2014.15

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing