Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Predicting outcomes in radiation oncology—multifactorial decision support systems

Abstract

With the emergence of individualized medicine and the increasing amount and complexity of available medical data, a growing need exists for the development of clinical decision-support systems based on prediction models of treatment outcome. In radiation oncology, these models combine both predictive and prognostic data factors from clinical, imaging, molecular and other sources to achieve the highest accuracy to predict tumour response and follow-up event rates. In this Review, we provide an overview of the factors that are correlated with outcome—including survival, recurrence patterns and toxicity—in radiation oncology and discuss the methodology behind the development of prediction models, which is a multistage process. Even after initial development and clinical introduction, a truly useful predictive model will be continuously re-evaluated on different patient datasets from different regions to ensure its population-specific strength. In the future, validated decision-support systems will be fully integrated in the clinic, with data and knowledge being shared in a standardized, instant and global manner.

Key Points

  • Many prediction models that consider factors related to disease and treatment are available, but lack standardized assessments of their robustness, reproducibility or clinical utility

  • The complete cycle of model development for decision making in radiotherapy involves several stages, including selection of data, performance measure, classification and external validation

  • Clinical decision-support systems (CDSSs) based on validated predictors will be crucial to implement personalized radiation oncology

  • Tolerance of normal tissue is the dose-limiting factor for the administration of radiotherapy, therefore, any CDSS should be based on predictors of tumour control and the probability of complications

  • Rapid-learning healthcare will enable the increasingly rapid validation of CDSSs, which, in turn, will enable the next major advances in shared decision making

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of methodological processes in clinical decision-support system development, describing model development, assessment of clinical usefulness and what ideally to publish.
Figure 2: The importance of considering measured dose for outcome prediction for a patient with prostate cancer.
Figure 3: Axial FDG–PET and CT images of two different patients with NSCLC.
Figure 4: A published nomogram for local control in patients with cancer of the larynx treated with radiotherapy.
Figure 5: Knowledge-driven health-care principles using a clinical decision-support system in conjunction with standard evidence and regulations to choose the optimal treatment.
Figure 6: A simplified schematic representation of systems biology applied to radiotherapy.

Similar content being viewed by others

References

  1. Vogelzang, N. J. et al. Clinical cancer advances 2011: annual report on progress against cancer from the American Society of Clinical Oncology. J. Clin. Oncol. 30, 88–109 (2012).

    Article  PubMed  Google Scholar 

  2. Fraass, B. A. & Moran, J. M. Quality, technology and outcomes: evolution and evaluation of new treatments and/or new technology. Semin. Radiat. Oncol. 22, 3–10 (2012).

    Article  PubMed  Google Scholar 

  3. Abernethy, A. P. et al. Rapid-learning system for cancer care. J. Clin. Oncol. 28, 4268–4274 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Maitland, M. L. & Schilsky, R. L. Clinical trials in the era of personalized oncology. CA Cancer J. Clin. 61, 365–381 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bachtiary, B. et al. Gene expression profiling in cervical cancer: an exploration of intratumor heterogeneity. Clin. Cancer Res. 12, 5632–5640 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Boyd, C. A., Benarroch-Gampel, J., Sheffield, K. M., Cooksley, C. D. & Riall, T. S. 415 patients with adenosquamous carcinoma of the pancreas: a population-based analysis of prognosis and survival. J. Surg. Res. 174, 12–19 (2012).

    Article  PubMed  Google Scholar 

  8. Milosevic, M. F. et al. Interstitial fluid pressure in cervical carcinoma: within tumor heterogeneity, and relation to oxygen tension. Cancer 82, 2418–2426 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 468, 346–352 (2012).

    Article  CAS  Google Scholar 

  10. Suit, H., Skates, S., Taghian, A., Okunieff, P. & Efird, J. T. Clinical implications of heterogeneity of tumor response to radiation therapy. Radiother. Oncol. 25, 251–260 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Aerts, H. J. et al. Identification of residual metabolic-active areas within NSCLC tumours using a pre-radiotherapy FDG-PET-CT scan: a prospective validation. Lung Cancer 75, 73–76 (2012).

    Article  PubMed  Google Scholar 

  12. Aerts, H. J. et al. Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy (18)Fluorodeoxyglucose–PET–CT scan. Radiother. Oncol. 91, 386–392 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vickers, A. J. Prediction models: revolutionary in principle, but do they do more good than harm? J. Clin. Oncol. 29, 2951–2952 (2011).

    Article  PubMed  Google Scholar 

  14. Bright, T. J. et al. Effect of clinical decision-support systems: a systematic review. Ann. Intern. Med. 157 29–43 (2012).

    Article  PubMed  Google Scholar 

  15. Clark, G. M. Prognostic factors versus predictive factors: examples from a clinical trial of erlotinib. Mol. Oncol. 1, 406–412 (2008).

    Article  PubMed  Google Scholar 

  16. Dancey, J. E. et al. Guidelines for the development and incorporation of biomarker studies in early clinical trials of novel agents. Clin. Cancer Res. 16, 1745–1755 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Peek, N., Arts, D. G., Bosman, R. J., van der Voort, P. H. & de Keizer, N. F. External validation of prognostic models for critically ill patients required substantial sample sizes. J. Clin. Epidemiol. 60, 491–501 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Vergouwe, Y., Steyerberg, E. W., Eijkemans, M. J. & Habbema, J. D. Substantial effective sample sizes were required for external validation studies of predictive logistic regression models. J. Clin. Epidemiol. 58, 475–483 (2005).

    Article  PubMed  Google Scholar 

  19. Steyerberg, E. W. et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 21, 128–138 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Aittokallio, T. Dealing with missing values in large-scale studies: microarray data imputation and beyond. Brief. Bioinform. 11, 253–264 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Ludbrook, J. Outlying observations and missing values: how should they be handled? Clin. Exp. Pharmacol. Physiol. 35, 670–678 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Jayalakshmi, T. & Santhakumaran, A. Statistical normalization and back propagation for classification. Int. J. Comput. Theory Eng. 3, 89–93 (2011).

    Article  Google Scholar 

  23. Huan, L. & Motoda, H. Feature Selection for Knowledge Discovery and Data Mining (Kluwer Academic Publishers, Norwell, MA, 1998).

    Google Scholar 

  24. Harrell, F. E. Regression Modeling Strategies (Springer, New York, 2001).

    Book  Google Scholar 

  25. Bishop, C. M. Pattern Recognition and Machine Learning (Springer, New York, 2007).

    Google Scholar 

  26. Lee, S. M. & Abbott, P. A. Bayesian networks for knowledge discovery in large datasets: basics for nurse researchers. J. Biomed. Inform. 36, 389–399 (2003).

    Article  PubMed  Google Scholar 

  27. Cruz, J. A. & Wishart, D. S. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2, 59–77 (2007).

    PubMed  PubMed Central  Google Scholar 

  28. Putter, H., Fiocco, M. & Geskus, R. B. Tutorial in biostatistics: competing risks and multi-state models. Stat. Med. 26, 2389–2430 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Moons, K. G. et al. Risk prediction models: II. External validation, model updating, and impact assessment. Heart 98, 691–698 (2012).

    Article  PubMed  Google Scholar 

  30. Dehing-Oberije, C. et al. Development, external validation and clinical usefulness of a practical prediction model for radiation-induced dysphagia in lung cancer patients. Radiother. Oncol. 97, 455–461 (2010).

    Article  PubMed  Google Scholar 

  31. Specht, M. C., Kattan, M. W., Gonen, M., Fey, J. & Van Zee, K. J. Predicting nonsentinel node status after positive sentinel lymph biopsy for breast cancer: clinicians versus nomogram. Ann. Surg. Oncol. 12, 654–659 (2005).

    Article  PubMed  Google Scholar 

  32. Dehing-Oberije, C. et al. Tumor volume combined with number of positive lymph node stations is a more important prognostic factor than TNM stage for survival of non-small-cell lung cancer patients treated with (chemo)radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 70, 1039–1044 (2008).

    Article  PubMed  Google Scholar 

  33. Vickers, A. J., Kramer, B. S. & Baker, S. G. Selecting patients for randomized trials: a systematic approach based on risk group. Trials 7, 30 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Baggerly, K. A. & Coombes, K. R. What information should be required to support clinical “omics” publications? Clin. Chem. 57, 688–690 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Klopp, A. H. & Eifel, P. J. Biological predictors of cervical cancer response to radiation therapy. Semin. Radiat. Oncol. 22, 143–150 (2012).

    Article  PubMed  Google Scholar 

  36. Kristiansen, G. Diagnostic and prognostic molecular biomarkers for prostate cancer. Histopathology 60, 125–141 (2012).

    Article  PubMed  Google Scholar 

  37. Dehing-Oberije, C. et al. Development and external validation of prognostic model for 2-year survival of non-small-cell lung cancer patients treated with chemoradiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 74, 355–362 (2009).

    Article  PubMed  Google Scholar 

  38. Ang, C. S., Phung, J. & Nice, E. C. The discovery and validation of colorectal cancer biomarkers. Biomed. Chromatogr. 25, 82–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Schmidt, M. E. & Steindorf, K. Statistical methods for the validation of questionnaires--discrepancy between theory and practice. Methods Inf. Med. 45, 409–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Garrido-Laguna, I. et al. Validation of the Royal Marsden Hospital prognostic score in patients treated in the Phase I Clinical Trials Program at the MD Anderson Cancer Center. Cancer 118, 1422–1428 (2012).

    Article  PubMed  Google Scholar 

  41. Shrier, I. et al. Should meta-analyses of interventions include observational studies in addition to randomized controlled trials? A critical examination of underlying principles. Am. J. Epidemiol. 166, 1203–1209 (2007).

    Article  PubMed  Google Scholar 

  42. Tzoulaki, I., Siontis, K. C. & Ioannidis, J. P. Prognostic effect size of cardiovascular biomarkers in datasets from observational studies versus randomised trials: meta-epidemiology study. BMJ 343, d6829 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Trotti, A., Colevas, A. D., Setser, A. & Basch, E. Patient-reported outcomes and the evolution of adverse event reporting in oncology. J. Clin. Oncol. 25, 5121–5127 (2007).

    Article  PubMed  Google Scholar 

  44. Trotti, A. et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin. Radiat. Oncol. 13, 176–181 (2003).

    Article  PubMed  Google Scholar 

  45. Golder, S., Loke, Y. K. & Bland, M. Meta-analyses of adverse effects data derived from randomised controlled trials as compared to observational studies: methodological overview. PLoS Med. 8, e1001026 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Steg, P. G. et al. External validity of clinical trials in acute myocardial infarction. Arch. Intern. Med. 167, 68–73 (2007).

    Article  PubMed  Google Scholar 

  47. Little, J. et al. Strengthening the reporting of genetic association studies (STREGA): an extension of the STROBE statement. Ann. Intern. Med. 150, 206–215 (2009).

    Article  PubMed  Google Scholar 

  48. von Elm, E. et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370, 1453–1457 (2007).

    Article  PubMed  Google Scholar 

  49. Dawson, L. A. & Sharpe, M. B. Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol. 7, 848–858 (2006).

    Article  PubMed  Google Scholar 

  50. Bentzen, S. M. et al. Quantitative analyses of normal tissue effects in the clinic (QUANTEC): an introduction to the scientific issues. Int. J. Radiat. Oncol. Biol. Phys. 76 (Suppl. 3), 3–9 (2010).

    Article  Google Scholar 

  51. Verellen, D. et al. Innovations in image-guided radiotherapy. Nat. Rev. Cancer 7, 949–960 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Holthusen, H. Erfahrungen über die Verträglichkeitsgrenze für Röntgenstrahlen und deren nutzanwendung zur verhütung von schäden [German]. Strahlentherapie 57, 254–269 (1936).

    Google Scholar 

  53. Valentini, V. et al. Nomograms for predicting local recurrence, distant metastases, and overall survival for patients with locally advanced rectal cancer on the basis of European randomized clinical trials. J. Clin. Oncol. 29, 3163–3172 (2011).

    Article  PubMed  Google Scholar 

  54. Belderbos, J. et al. Randomised trial of sequential versus concurrent chemo-radiotherapy in patients with inoperable non-small cell lung cancer (EORTC 08972–22973). Eur. J. Cancer 43, 114–121 (2007).

    Article  PubMed  Google Scholar 

  55. Lambin, P. et al. The ESTRO Breur Lecture 2009. From population to voxel-based radiotherapy: exploiting intra-tumour and intra-organ heterogeneity for advanced treatment of non-small cell lung cancer. Radiother. Oncol. 96, 145–152 (2010).

    Article  PubMed  Google Scholar 

  56. Graham, M. V. et al. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int. J. Radiat. Oncol. Biol. Phys. 45, 323–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Emami, B. et al. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 21, 109–122 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Ottolenghi, A., Smyth, V. & Trott, K. R. The risks to healthy tissues from the use of existing and emerging techniques for radiation therapy. Radiat. Prot. Dosimetry 143, 533–535 (2011).

    Article  PubMed  Google Scholar 

  59. Beetz, I. et al. NTCP models for patient-rated xerostomia and sticky saliva after treatment with intensity modulated radiotherapy for head and neck cancer: the role of dosimetric and clinical factors. Radiother. Oncol. http://dx.doi.org/10.1016/j.radonc.2012.03.004.

  60. van der Schaaf, A. et al. Multivariate modeling of complications with data driven variable selection: guarding against overfitting and effects of data set size. Radiother. Oncol. http://dx.doi.org/10.1016/j.radonc.2011.12.006.

  61. Xu, C.-J., van der Schaaf, A., van' t Veld, A. A., Langendijk, J. A. & Schilstra, C. Statistical validation of normal tissue complication probability models. Int. J. Radiat. Oncol. Biol. Phys. 84, e123–e129 (2012).

    Article  PubMed  Google Scholar 

  62. Nijsten, S. M., Mijnheer, B. J., Dekker, A. L., Lambin, P. & Minken, A. W. Routine individualised patient dosimetry using electronic portal imaging devices. Radiother. Oncol. 83, 65–75 (2007).

    Article  PubMed  Google Scholar 

  63. van Elmpt, W., Petit, S., De Ruysscher, D., Lambin, P. & Dekker, A. 3D dose delivery verification using repeated cone-beam imaging and EPID dosimetry for stereotactic body radiotherapy of non-small cell lung cancer. Radiother. Oncol. 94, 188–194 (2010).

    Article  PubMed  Google Scholar 

  64. van Elmpt, W. et al. 3D in vivo dosimetry using megavoltage cone-beam CT and EPID dosimetry. Int. J. Radiat. Oncol. Biol. Phys. 73, 1580–1587 (2009).

    Article  PubMed  Google Scholar 

  65. Rodrigues, G., Lock, M., D'Souza, D., Yu, E. & Van Dyk, J. Prediction of radiation pneumonitis by dose–volume histogram parameters in lung cancer—a systematic review. Radiother. Oncol. 71, 127–138 (2004).

    Article  PubMed  Google Scholar 

  66. Werner-Wasik, M., Yorke, E., Deasy, J., Nam, J. & Marks, L. B. Radiation dose-volume effects in the esophagus. Int. J. Radiat. Oncol. Biol. Phys. 76 (Suppl. 3), S86–S93 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Saunders, M., Rojas, A. M. & Dische, S. CHART revisited: a conservative approach for advanced head and neck cancer. Clin. Oncol. (R. Coll. Radiol.) 20, 127–133 (2008).

    Article  CAS  Google Scholar 

  68. Turner, N. et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene 29, 2013–2023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Begg, A. C. et al. The value of pretreatment cell kinetic parameters as predictors for radiotherapy outcome in head and neck cancer: a multicenter analysis. Radiother. Oncol. 50, 13–23 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Taguchi, F. et al. Mass spectrometry to classify non-small-cell lung cancer patients for clinical outcome after treatment with epidermal growth factor receptor tyrosine kinase inhibitors: a multicohort cross-institutional study. J. Natl Cancer Inst. 99, 838–846 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Hessel, F. et al. Impact of increased cell loss on the repopulation rate during fractionated irradiation in human FaDu squamous cell carcinoma growing in nude mice. Int. J. Radiat. Biol. 79, 479–486 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Baumann, M., Krause, M. & Hill, R. Exploring the role of cancer stem cells in radioresistance. Nat. Rev. Cancer 8, 545–554 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Ben-Josef, E. et al. Impact of overall treatment time on survival and local control in patients with anal cancer: a pooled data analysis of Radiation Therapy Oncology Group trials 87–04 and 98–11. J. Clin. Oncol. 28, 5061–5066 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Thames, H. D. et al. The role of overall treatment time in the outcome of radiotherapy of prostate cancer: an analysis of biochemical failure in 4839 men treated between 1987 and 1995. Radiother. Oncol. 96, 6–12 (2010).

    Article  PubMed  Google Scholar 

  75. Fass, L. Imaging and cancer: A review. Mol. Oncol. 2, 115–152 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Torigian, D. A., Huang, S. S., Houseni, M. & Alavi, A. Functional imaging of cancer with emphasis on molecular techniques. CA Cancer J. Clin. 57, 206–224 (2007).

    Article  PubMed  Google Scholar 

  77. Eadie, L. H., Taylor, P. & Gibson, A. P. A systematic review of computer-assisted diagnosis in diagnostic cancer imaging. Eur. J. Radiol. 81, e70–e76 (2012).

    Article  PubMed  Google Scholar 

  78. Gillies, R. J., Anderson, A. R., Gatenby, R. A. & Morse, D. L. The biology underlying molecular imaging in oncology: from genome to anatome and back again. Clin. Radiol. 65, 517–521 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lambin, P. et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48, 441–446 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Velazquez, E. R., Aerts, H. J., Oberije, C., De Ruysscher, D. & Lambin, P. Prediction of residual metabolic activity after treatment in NSCLC patients. Acta Oncol. 49, 1033–1039 (2010).

    Article  PubMed  Google Scholar 

  81. Cangir, A. K. et al. Prognostic value of tumor size in non-small cell lung cancer larger than five centimeters in diameter. Lung Cancer 46, 325–331 (2004).

    Article  PubMed  Google Scholar 

  82. Lam, J. S. et al. Prognostic relevance of tumour size in T3a renal cell carcinoma: a multicentre experience. Eur. Urol. 52, 155–162 (2007).

    Article  PubMed  Google Scholar 

  83. Pitson, G. et al. Tumor size and oxygenation are independent predictors of nodal diseases in patients with cervix cancer. Int. J. Radiat. Oncol. Biol. Phys. 51, 699–703 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Thomas, F. et al. Radical radiotherapy alone in non-operable breast cancer: The major impact of tumor size and histological grade on prognosis. Radiother. Oncol. 13, 267–276 (1988).

    Article  CAS  PubMed  Google Scholar 

  85. Steenbakkers, R. J. et al. Observer variation in target volume delineation of lung cancer related to radiation oncologist-computer interaction: a 'Big Brother' evaluation. Radiother. Oncol. 77, 182–190 (2005).

    Article  PubMed  Google Scholar 

  86. Greco, C., Rosenzweig, K., Cascini, G. L. & Tamburrini, O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer 57, 125–134 (2007).

    Article  PubMed  Google Scholar 

  87. Caldwell, C. B. et al. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int. J. Radiat. Oncol. Biol. Phys. 51, 923–931 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Bowden, P. et al. Measurement of lung tumor volumes using three-dimensional computer planning software. Int. J. Radiat. Oncol. Biol. Phys. 53, 566–573 (2002).

    Article  PubMed  Google Scholar 

  89. Nishino, M. et al. CT tumor volume measurement in advanced non-small-cell lung cancer: performance characteristics of an emerging clinical tool. Acad. Radiol. 18, 54–62 (2011).

    Article  PubMed  Google Scholar 

  90. Marcus, C. D. et al. Imaging techniques to evaluate the response to treatment in oncology: current standards and perspectives. Crit. Rev. Oncol. Hematol. 72, 217–238 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Schwartz, L. H., Mazumdar, M., Brown, W., Smith, A. & Panicek, D. M. Variability in response assessment in solid tumors: effect of number of lesions chosen for measurement. Clin. Cancer Res. 9, 4318–4323 (2003).

    PubMed  Google Scholar 

  92. Erasmus, J. J. et al. Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: implications for assessment of tumor response. J. Clin. Oncol. 21, 2574–2582 (2003).

    Article  PubMed  Google Scholar 

  93. Therasse, P. Measuring the clinical response. What does it mean? Eur. J. Cancer 38, 1817–1823 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Nehmeh, S. A. & Erdi, Y. E. Respiratory motion in positron emission tomography/computed tomography: a review. Semin. Nucl. Med. 38, 167–176 (2008).

    Article  PubMed  Google Scholar 

  95. Sonke, J. J. & Belderbos, J. Adaptive radiotherapy for lung cancer. Semin. Radiat. Oncol. 20, 94–106 (2010).

    Article  PubMed  Google Scholar 

  96. van Baardwijk, A. et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int. J. Radiat. Oncol. Biol. Phys. 68, 771–778 (2007).

    Article  PubMed  Google Scholar 

  97. Wu, K. et al. PET CT thresholds for radiotherapy target definition in non-small-cell lung cancer: how close are we to the pathologic findings? Int. J. Radiat. Oncol. Biol. Phys. 77, 699–706 (2010).

    Article  PubMed  Google Scholar 

  98. Wanet, M. et al. Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: a comparison with threshold-based approaches, CT and surgical specimens. Radiother. Oncol. 98, 117–125 (2011).

    Article  PubMed  Google Scholar 

  99. Strassmann, G. et al. Atlas-based semiautomatic target volume definition (CTV) for head-and-neck tumors. Int. J. Radiat. Oncol. Biol. Phys. 78, 1270–1276 (2010).

    Article  PubMed  Google Scholar 

  100. Nestle, U. et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J. Nucl. Med. 46, 1342–1348 (2005).

    PubMed  Google Scholar 

  101. Daisne, J. F. et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 233, 93–100 (2004).

    Article  PubMed  Google Scholar 

  102. van Loon, J. et al. Therapeutic implications of molecular imaging with PET in the combined modality treatment of lung cancer. Cancer Treat. Rev. 37, 331–343 (2011).

    Article  PubMed  Google Scholar 

  103. Wood, K. A., Hoskin, P. J. & Saunders, M. I. Positron emission tomography in oncology: a review. Clin. Oncol. 19, 237–255 (2007).

    Article  CAS  Google Scholar 

  104. O'Connor, J. P. et al. Quantitative imaging biomarkers in the clinical development of targeted therapeutics: current and future perspectives. Lancet Oncol. 9, 766–776 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. van Baardwijk, A. et al. Time trends in the maximal uptake of FDG on PET scan during thoracic radiotherapy. A prospective study in locally advanced non-small cell lung cancer (NSCLC) patients. Radiother. Oncol. 82, 145–152 (2007).

    Article  PubMed  Google Scholar 

  106. Rodney, J. H. PET for therapeutic response monitoring in oncology. PET Clinics 3, 89–99 (2008).

    Article  Google Scholar 

  107. Chung, H. H. et al. Prognostic value of metabolic tumor volume measured by FDG-PET/CT in patients with cervical cancer. Gynecol. Oncol. 120, 270–274 (2011).

    Article  PubMed  Google Scholar 

  108. Borst, G. R. et al. Standardised FDG uptake: a prognostic factor for inoperable non-small cell lung cancer. Eur. J. Cancer 41, 1533–1541 (2005).

    Article  PubMed  Google Scholar 

  109. Mac Manus, M. P. et al. Metabolic (FDG–PET) response after radical radiotherapy/chemoradiotherapy for non-small cell lung cancer correlates with patterns of failure. Lung Cancer 49, 95–108 (2005).

    Article  PubMed  Google Scholar 

  110. Hoekstra, C. J. et al. Prognostic relevance of response evaluation using [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J. Clin. Oncol. 23, 8362–8370 (2005).

    Article  PubMed  Google Scholar 

  111. Soto, D. E., Kessler, M. L., Piert, M. & Eisbruch, A. Correlation between pretreatment FDG–PET biological target volume and anatomical location of failure after radiation therapy for head and neck cancers. Radiother. Oncol. 89, 13–18 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lambrecht, M. et al. The use of FDG–PET/CT and diffusion-weighted magnetic resonance imaging for response prediction before, during and after preoperative chemoradiotherapy for rectal cancer. Acta Oncol. 49, 956–963 (2010).

    Article  PubMed  Google Scholar 

  113. Janssen, M. H. M. et al. Evaluation of early metabolic responses in rectal cancer during combined radiochemotherapy or radiotherapy alone: Sequential FDG–PET–CT findings. Radiother. Oncol. 94, 151–155 (2010).

    Article  PubMed  Google Scholar 

  114. Ceulemans, G. et al. Can 18-FDG-PET during radiotherapy replace post-therapy scanning for detection/demonstration of tumor response in head-and-neck cancer? Int. J. Radiat. Oncol. Biol. Phys. 81, 938–942 (2011).

    Article  PubMed  Google Scholar 

  115. van Loon, J. et al. Early CT and FDG-metabolic tumour volume changes show a significant correlation with survival in stage I-III small cell lung cancer: a hypothesis generating study. Radiother. Oncol. 99, 172–175 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bussink, J., Kaanders, J. H., van der Graaf, W. T. & Oyen, W. J. PET–CT for radiotherapy treatment planning and response monitoring in solid tumors. Nat. Rev. Clin. Oncol. 8, 233–242 (2011).

    Article  PubMed  Google Scholar 

  117. Boellaard, R. Need for standardization of 18F-FDG PET/CT for treatment response assessments. J. Nucl. Med. 52 (Suppl. 2), 93–100 (2011).

    Article  Google Scholar 

  118. Boellaard, R. et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur. J. Nucl. Med. Mol. Imaging 35, 2320–2333 (2008).

    Article  PubMed  Google Scholar 

  119. Boellaard, R. et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur. J. Nucl. Med. Mol. Imaging 37, 181–200 (2010).

    Article  PubMed  Google Scholar 

  120. Bayouth, J. E. et al. Image-based biomarkers in clinical practice. Semin. Radiat. Oncol. 21, 157–166 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Harry, V. N., Semple, S. I., Parkin, D. E. & Gilbert, F. J. Use of new imaging techniques to predict tumour response to therapy. Lancet Oncol. 11, 92–102 (2010).

    Article  PubMed  Google Scholar 

  122. Heijmen, L. et al. Tumour response prediction by diffusion-weighted MR imaging: ready for clinical use? Crit. Rev. Oncol. Hematol. 83, 194–207 (2012).

    Article  PubMed  Google Scholar 

  123. Lambrecht, M. et al. The prognostic value of pretherapeutic diffusion-weighted MRI in oropharyngeal carcinoma treated with (chemo-)radiotherapy. Cancer Imaging 11, S112–S113 (2011).

    Article  Google Scholar 

  124. Vandecaveye, V. et al. Diffusion-weighted magnetic resonance imaging early after chemoradiotherapy to monitor treatment response in head-and-neck squamous cell carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 82, 1098–1107 (2012).

    Article  PubMed  Google Scholar 

  125. Kim, S. Y. et al. Malignant hepatic tumors: short-term reproducibility of apparent diffusion coefficients with breath-hold and respiratory-triggered diffusion-weighted MR imaging. Radiology 255, 815–823 (2010).

    Article  PubMed  Google Scholar 

  126. Sinkus, R., Van Beers, B. E., Vilgrain, V., Desouza, N. & Waterton, J. C. Apparent diffusion coefficient from magnetic resonance imaging as a biomarker in oncology drug development. Eur. J. Cancer 48, 425–431 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Kierkels, R. G. et al. Comparison between perfusion computed tomography and dynamic contrast-enhanced magnetic resonance imaging in rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 77, 400–408 (2010).

    Article  PubMed  Google Scholar 

  128. Shukla-Dave, A. et al. Dynamic contrast-enhanced magnetic resonance imaging as a predictor of outcome in head and neck squamous cell carcinoma patients with nodal metastases. Int. J. Radiat. Oncol. Biol. Phys. 82, 1837–1844 (2012).

    Article  PubMed  Google Scholar 

  129. Yaromina, A. et al. Co-localisation of hypoxia and perfusion markers with parameters of glucose metabolism in human squamous cell carcinoma (hSCC) xenografts. Int. J. Radiat. Biol. 85, 972–980 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Mörchel, P. et al. Correlating quantitative MR measurements of standardized tumor lines with histological parameters and tumor control dose. Radiother. Oncol. 96, 123–130 (2010).

    Article  PubMed  Google Scholar 

  131. Quennet, V. et al. Tumor lactate content predicts for response to fractionated irradiation of human squamous cell carcinomas in nude mice. Radiother. Oncol. 81, 130–135 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Kim, Y. I. et al. Multiphase contrast-enhanced CT imaging in hepatocellular carcinoma correlation with immunohistochemical angiogenic activities. Acad. Radiol. 14, 1084–1091 (2007).

    Article  PubMed  Google Scholar 

  133. Miles, K. A. Perfusion CT for the assessment of tumour vascularity: which protocol? Br. J. Radiol. 76, S36–S42 (2003).

    Article  PubMed  Google Scholar 

  134. Miles, K. A. Molecular imaging with dynamic contrast-enhanced computed tomography. Clin. Radiol. 65, 549–556 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Petralia, G. et al. CT perfusion in oncology: how to do it. Cancer Imaging 10, 8–19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Asselin, M. C., O'Connor, J. P., Boellaard, R., Thacker, N. A. & Jackson, A. Quantifying heterogeneity in human tumours using MRI and PET. Eur. J. Cancer 48, 447–455 (2012).

    Article  PubMed  Google Scholar 

  137. Eary, J. F., O'Sullivan, F., O'Sullivan, J. & Conrad, E. U. Spatial heterogeneity in sarcoma 18F-FDG uptake as a predictor of patient outcome. J. Nucl. Med. 49, 1973–1979 (2008).

    Article  PubMed  Google Scholar 

  138. Tixier, F. et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J. Nucl. Med. 52, 369–378 (2011).

    Article  PubMed  Google Scholar 

  139. Diehn, M. et al. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc. Natl Acad. Sci. USA 105, 5213–5218 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kuo, M. D., Gollub, J., Sirlin, C. B., Ooi, C. & Chen, X. Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J. Vasc. Interv. Radiol. 18, 821–831 (2007).

    Article  PubMed  Google Scholar 

  141. Segal, E. et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat. Biotechnol. 25, 675–680 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Rutman, A. M. & Kuo, M. D. Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur. J. Radiol. 70, 232–241 (2009).

    Article  PubMed  Google Scholar 

  143. Lindegaard, J. C., Overgaard, J., Bentzen, S. M. & Pedersen, D. Is there a radiobiologic basis for improving the treatment of advanced stage cervical cancer? J. Natl Cancer Inst. Monogr. 105–112 (1996).

  144. Slonina, D. & Gasin´ska, A. Intrinsic radiosensitivity of healthy donors and cancer patients as determined by the lymphocyte micronucleus assay. Int. J. Radiat. Biol. 72, 693–701 (1997).

    Article  CAS  PubMed  Google Scholar 

  145. Fertil, B. & Malaise, E. P. Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves. Int. J. Radiat. Oncol. Biol. Phys. 11, 1699–1707 (1985).

    Article  CAS  PubMed  Google Scholar 

  146. West, C. M., Davidson, S. E., Roberts, S. A. & Hunter, R. D. The independence of intrinsic radiosensitivity as a prognostic factor for patient response to radiotherapy of carcinoma of the cervix. Br. J. Cancer 76, 1184–1190 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Björk-Eriksson, T., West, C., Karlsson, E. & Mercke, C. Tumor radiosensitivity (SF2) is a prognostic factor for local control in head and neck cancers. Int. J. Radiat. Oncol. Biol. Phys. 46, 13–19 (2000).

    Article  PubMed  Google Scholar 

  148. Bartelink, H. et al. Towards prediction and modulation of treatment response. Radiother. Oncol. 50, 1–11 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Begg, A. C. Predicting recurrence after radiotherapy in head and neck cancer. Semin. Radiat. Oncol. 22, 108–118 (2012).

    Article  PubMed  Google Scholar 

  150. Menegakis, A. et al. Prediction of clonogenic cell survival curves based on the number of residual DNA double strand breaks measured by γ-H2AX staining. Int. J. Radiat. Biol. 85, 1032–1041 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Olive, P. L. & Banáth, J. P. Phosphorylation of histone H2AX as a measure of radiosensitivity. Int. J. Radiat. Oncol. Biol. Phys. 58, 331–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Höckel, M. et al. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 56, 4509–4515 (1996).

    PubMed  Google Scholar 

  153. Vaupel, P. & Mayer, A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 26, 225–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Chouaib, S. et al. Hypoxia promotes tumor growth in linking angiogenesis to immune escape. Front. Immunol. 3, 21 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Kaanders, J. H. et al. Pimonidazole binding and tumor vascularity predict for treatment outcome in head and neck cancer. Cancer Res. 62, 7066–7074 (2002).

    CAS  PubMed  Google Scholar 

  156. Nordsmark, M. et al. The prognostic value of pimonidazole and tumour pO2 in human cervix carcinomas after radiation therapy: a prospective international multi-center study. Radiother. Oncol. 80, 123–131 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Rouschop, K. M. A. et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Invest. 120, 127–141 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Krause, B. J., Beck, R., Souvatzoglou, M. & Piert, M. PET and PET/CT studies of tumor tissue oxygenation. Q. J. Nucl. Med. Mol. Imaging 50, 28–43 (2006).

    CAS  PubMed  Google Scholar 

  159. Dubois, L. J. et al. Preclinical evaluation and validation of [18F]HX4, a promising hypoxia marker for PET imaging. Proc. Natl Acad. Sci. USA 108, 14620–14625 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. van Loon, J. et al. Selective nodal irradiation on basis of (18)FDG–PET scans in limited-disease small-cell lung cancer: a prospective study. Int. J. Radiat. Oncol. Biol. Phys. 77, 329–336 (2010).

    Article  PubMed  Google Scholar 

  161. West, C. M., Cooper, R. A., Loncaster, J. A., Wilks, D. P. & Bromley, M. Tumor vascularity: a histological measure of angiogenesis and hypoxia. Cancer Res. 61, 2907–2910 (2001).

    CAS  PubMed  Google Scholar 

  162. Maciejewski, B., Withers, H. R., Taylor, J. M. & Hliniak, A. Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx: tumor dose-response and repopulation. Int. J. Radiat. Oncol. Biol. Phys. 16, 831–843 (1989).

    Article  CAS  PubMed  Google Scholar 

  163. Suzuki, Y. et al. Prognostic impact of mitotic index of proliferating cell populations in cervical cancer patients treated with carbon ion beam. Cancer 115, 1875–1882 (2009).

    Article  PubMed  Google Scholar 

  164. Turesson, I., Nyman, J., Holmberg, E. & Odén, A. Prognostic factors for acute and late skin reactions in radiotherapy patients. Int. J. Radiat. Oncol. Biol. Phys. 36, 1065–1075 (1996).

    Article  CAS  PubMed  Google Scholar 

  165. Johansen, J., Bentzen, S. M., Overgaard, J. & Overgaard, M. Evidence for a positive correlation between in vitro radiosensitivity of normal human skin fibroblasts and the occurrence of subcutaneous fibrosis after radiotherapy. Int. J. Radiat. Biol. 66, 407–412 (1994).

    Article  CAS  PubMed  Google Scholar 

  166. West, C. M. et al. Lymphocyte radiosensitivity is a significant prognostic factor for morbidity in carcinoma of the cervix. Int. J. Radiat. Oncol. Biol. Phys. 51, 10–15 (2001).

    Article  CAS  PubMed  Google Scholar 

  167. Peacock, J. et al. Cellular radiosensitivity and complication risk after curative radiotherapy. Radiother. Oncol. 55, 173–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  168. Russell, N. S. et al. Low predictive value of intrinsic fibroblast radiosensitivity for fibrosis development following radiotherapy for breast cancer. Int. J. Radiat. Biol. 73, 661–670 (1998).

    Article  CAS  PubMed  Google Scholar 

  169. Russell, N. S., Arlett, C. F., Bartelink, H. & Begg, A. C. Use of fluorescence in situ hybridization to determine the relationship between chromosome aberrations and cell survival in eight human fibroblast strains. Int. J. Radiat. Biol. 68, 185–196 (1995).

    Article  CAS  PubMed  Google Scholar 

  170. Kiltie, A. E. et al. A correlation between residual radiation-induced DNA double-strand breaks in cultured fibroblasts and late radiotherapy reactions in breast cancer patients. Radiother. Oncol. 51, 55–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  171. Dileto, C. L. & Travis, E. L. Fibroblast radiosensitivity in vitro and lung fibrosis in vivo: comparison between a fibrosis-prone and fibrosis-resistant mouse strain. Radiat. Res. 146, 61–67 (1996).

    Article  CAS  PubMed  Google Scholar 

  172. Azria, D. et al. Concurrent or sequential adjuvant letrozole and radiotherapy after conservative surgery for early-stage breast cancer (CO-HO-RT): a phase 2 randomised trial. Lancet Oncol. 11, 258–265 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Bentzen, S. M. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat. Rev. Cancer 6, 702–713 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Rodemann, H. P. & Bamberg, M. Cellular basis of radiation-induced fibrosis. Radiother. Oncol. 35, 83–90 (1995).

    Article  CAS  PubMed  Google Scholar 

  175. Andreassen, C. N., Alsner, J., Overgaard, M., Sørensen, F. B. & Overgaard, J. Risk of radiation-induced subcutaneous fibrosis in relation to single nucleotide polymorphisms in TGFB1, SOD2, XRCC1, XRCC3, APEX and ATM—a study based on DNA from formalin fixed paraffin embedded tissue samples. Int. J. Radiat. Biol. 82, 577–586 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. Chang-Claude, J. et al. Association between polymorphisms in the DNA repair genes, XRCC1, APE1, and XPD and acute side effects of radiotherapy in breast cancer patients. Clin. Cancer Res. 11, 4802–4809 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Barnett, G. C. et al. Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: a prospective analysis study. Lancet Oncol. 13, 65–77 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Cammann, H., Jung, K., Meyer, H. A. & Stephan, C. Avoiding pitfalls in applying prediction models, as illustrated by the example of prostate cancer diagnosis. Clin. Chem. 57, 1490–1498 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Iasonos, A., Schrag, D., Raj, G. V. & Panageas, K. S. How to build and interpret a nomogram for cancer prognosis. J. Clin. Oncol. 26, 1364–1370 (2008).

    Article  PubMed  Google Scholar 

  180. Dehing-Oberije, C. et al. Development and validation of a prognostic model using blood biomarker information for prediction of survival of non-small-cell lung cancer patients treated with combined chemotherapy and radiation or radiotherapy alone (NCT00181519, NCT00573040, and NCT00572325). Int. J. Radiat. Oncol. Biol. Phys. 81, 360–368 (2011).

    Article  PubMed  Google Scholar 

  181. Egelmeer, A. G. et al. Development and validation of a nomogram for prediction of survival and local control in laryngeal carcinoma patients treated with radiotherapy alone: a cohort study based on 994 patients. Radiother. Oncol. 100, 108–115 (2011).

    Article  PubMed  Google Scholar 

  182. van Stiphout, R. G. et al. Development and external validation of a predictive model for pathological complete response of rectal cancer patients including sequential PET–CT imaging. Radiother. Oncol. 98, 126–133 (2011).

    Article  PubMed  Google Scholar 

  183. Marko, N. F., Xu, Z., Gao, T., Kattan, M. W. & Weil, R. J. Predicting survival in women with breast cancer and brain metastasis: a nomogram outperforms current survival prediction models. Cancer 118, 3749–3757 (2011).

    Article  PubMed  Google Scholar 

  184. Rudloff, U. et al. Nomogram for predicting the risk of local recurrence after breast-conserving surgery for ductal carcinoma in situ. J. Clin. Oncol. 28, 3762–3769 (2010).

    Article  PubMed  Google Scholar 

  185. Adjuvant! Inc. Adjuvant! Online [online], (2011).

  186. Hajage, D. et al. External validation of Adjuvant! Online breast cancer prognosis tool. Prioritising recommendations for improvement. PLoS ONE 6, e27446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kuo, Y. L., Chen, D. R. & Chang, T. W. Accuracy validation of Adjuvant! Online in Taiwanese breast cancer patients—a 10-year analysis. BMC Med. Inform. Decis. Mak. 12, 108 (2012).

    Article  Google Scholar 

  188. MAASTRO Clinic. Cancer Prediction Models [online], (2012).

  189. Ginsburg, G. S., Staples, J. & Abernethy, A. P. Academic medical centers: ripe for rapid-learning personalized health care. Sci. Transl. Med. 3, 101cm127 (2011).

    Article  Google Scholar 

  190. Deasy, J. O. et al. Improving normal tissue complication probability models: the need to adopt a “data-pooling” culture. Int. J. Radiat. Oncol. Biol. Phys. 76 (Suppl. 3), S151–S154 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Roelofs, E. et al. Design of and technical challenges involved in a framework for multicentric radiotherapy treatment planning studies. Radiother. Oncol. 97, 567–571 (2010).

    Article  PubMed  Google Scholar 

  192. Euregional Computer Assisted Theragnostics (EuroCAT) project [online], (2012).

  193. De Ruysscher, D. et al. First report on the patient database for the identification of the genetic pathways involved in patients over-reacting to radiotherapy: GENEPI–II. Radiother. Oncol. 97, 36–39 (2010).

    Article  CAS  PubMed  Google Scholar 

  194. West, C. et al. Establishment of a radiogenomics consortium. Int. J. Radiat. Oncol. Biol. Phys. 76, 1295–1296 (2010).

    Article  PubMed  Google Scholar 

  195. Kessel, K. A. et al. Connection of European particle therapy centers and generation of a common particle database system within the European ULICE-framework. Radiat. Oncol. 7, 115 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Meyerson, M., Gabriel, S. & Getz, G. Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet. 11, 685–696 (2010).

    Article  CAS  PubMed  Google Scholar 

  197. Wulfkuhle, J. D., Liotta, L. A. & Petricoin, E. F. Proteomic applications for the early detection of cancer. Nat. Rev. Cancer 3, 267–275 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Pinkel, D. & Albertson, D. G. Array comparative genomic hybridization and its applications in cancer. Nat. Genet. 37 (Suppl.), S11–S17 (2005).

    Article  CAS  PubMed  Google Scholar 

  199. Quackenbush, J. Microarray analysis and tumor classification. N. Engl. J. Med. 354, 2463–2472 (2006).

    Article  CAS  PubMed  Google Scholar 

  200. Lu, Y. et al. Kinome siRNA-phosphoproteomic screen identifies networks regulating AKT signaling. Oncogene 30, 4567–4577 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Gupta, P. B. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645–659 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Director's Challenge Consortium for the Molecular Classification of Lung Adenocarcinoma. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat. Med. 14, 822–827 (2008).

  203. Yanaihara, N. et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9, 189–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  204. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Best, T. et al. Variants at 6q21 implicate PRDM1 in the etiology of therapy-induced second malignancies after Hodgkin's lymphoma. Nat. Med. 17, 941–943 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kerns, S. L. et al. Genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with the development of erectile dysfunction in African-American men after radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 78, 1292–1300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. de Jong, M. C. et al. CD44 expression predicts local recurrence after radiotherapy in larynx cancer. Clin. Cancer Res. 16, 5329–5338 (2010).

    Article  CAS  PubMed  Google Scholar 

  208. Kitahara, O., Katagiri, T., Tsunoda, T., Harima, Y. & Nakamura, Y. Classification of sensitivity or resistance of cervical cancers to ionizing radiation according to expression profiles of 62 genes selected by cDNA microarray analysis. Neoplasia 4, 295–303 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Torres-Roca, J. F. et al. Prediction of radiation sensitivity using a gene expression classifier. Cancer Res. 65, 7169–7176 (2005).

    Article  CAS  PubMed  Google Scholar 

  210. Wong, Y. F. et al. Gene expression pattern associated with radiotherapy sensitivity in cervical cancer. Cancer J. 12, 189–193 (2006).

    Article  CAS  PubMed  Google Scholar 

  211. Yang, S. et al. Identification of prognostic biomarkers for response to radiotherapy by DNA microarray in nasopharyngeal carcinoma patients. Int. J. Oncol. 40, 1590–1600 (2012).

    Article  CAS  PubMed  Google Scholar 

  212. Starmans, M. H. et al. The prognostic value of temporal in vitro and in vivo derived hypoxia gene-expression signatures in breast cancer. Radiother. Oncol. 102, 436–443 (2012).

    Article  CAS  PubMed  Google Scholar 

  213. Winter, S. C. et al. Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res. 67, 3441–3449 (2007).

    Article  CAS  PubMed  Google Scholar 

  214. Starmans, M. H. et al. Robust prognostic value of a knowledge-based proliferation signature across large patient microarray studies spanning different cancer types. Br. J. Cancer 99, 1884–1890 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Koboldt, D. C., Ding, L., Mardis, E. R. & Wilson, R. K. Challenges of sequencing human genomes. Brief. Bioinform. 11, 484–498 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Dupuy, A. & Simon, R. M. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J. Natl Cancer Inst. 99, 147–157 (2007).

    Article  PubMed  Google Scholar 

  217. Ein-Dor, L., Zuk, O. & Domany, E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc. Natl Acad. Sci. USA 103, 5923–5928 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Teo, Y. Y. Common statistical issues in genome-wide association studies: a review on power, data quality control, genotype calling and population structure. Curr. Opin. Lipidol. 19, 133–143 (2008).

    Article  CAS  PubMed  Google Scholar 

  219. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    Article  CAS  PubMed  Google Scholar 

  220. International Cancer Genome Consortium. International network of cancer genome projects. Nature 464, 993–998 (2010).

  221. van Elmpt, W., Ollers, M., Dingemans, A. M., Lambin, P. & De Ruysscher, D. Response assessment using 18F-FDG PET early in the course of radiotherapy correlates with survival in advanced-stage non-small cell lung cancer. J. Nucl. Med. 53, 1514–1520 (2012).

    Article  PubMed  Google Scholar 

  222. Mayr, N. A. et al. Characterizing tumor heterogeneity with functional imaging and quantifying high-risk tumor volume for early prediction of treatment outcome: cervical cancer as a model. Int. J. Radiat. Oncol. Biol. Phys. 83, 972–979 (2012).

    Article  PubMed  Google Scholar 

  223. European Commission. Digital Agenda for Europe [online], (2012).

  224. European Commission Information Society. ICT for better healthcare in Europe [online], (2012).

Download references

Acknowledgements

We acknowledge financial support from the Center for Translational Molecular Medicine framework (AIR FORCE), European Union sixth and seventh framework programme (ARTFORCE and METOXIA), INTERREG (www.eurocat.info), QuIC-ConCePT (funded by the Innovative Medicine Initiative Joint Undertaking) and the Dutch Cancer Society (KWF UM 2011-5020 and KWF UM 2009-4454).

Author information

Authors and Affiliations

Authors

Contributions

P. Lambin and R. G. P. M. van Stiphout contributed equally to this manuscript, leading the research efforts for the data, discussion of the article content and writing of the manuscript. M. H. W. Starmans, E. Rios-Velazquez, E. Roelofs, W. van Elmpt, A. C. Begg, and D. De Ruysscher contributed to the discussion of the article's content and helped to write the manuscript. G. Nalbantov and H. J. W. L. Aerts helped to write the manuscript. P. C. Boutros and A. Dekker researched the data, contributed to the discussion of the article's content and helped to write the manuscript. P. Granone and V. Valentini contributed to the discussion of the article's content. All authors edited the manuscript before submission.

Corresponding author

Correspondence to Philippe Lambin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambin, P., van Stiphout, R., Starmans, M. et al. Predicting outcomes in radiation oncology—multifactorial decision support systems. Nat Rev Clin Oncol 10, 27–40 (2013). https://doi.org/10.1038/nrclinonc.2012.196

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.196

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer