Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Image-guided radiotherapy: from current concept to future perspectives

Abstract

Radiotherapy is a highly effective, targeted therapy for the management of cancer. Technological innovations have enabled the direct integration of imaging technology into the radiation treatment device to increase the precision and accuracy of radiation delivery. As well as addressing a clinical need to better control the placement of the dose within the body, image-guided radiotherapy has enabled innovators in the field to accelerate their exploration of a number of different paradigms of radiation delivery, including toxicity reduction, dose escalation, hypofractionation, voxelization, and adaptation. Although these approaches are already innovative trends in radiation oncology, it is anticipated that they will work synergistically with other innovations in cancer management (including biomarker strategies, novel systemic and local therapies) as part of the broader goal of personalized cancer medicine. This Review discusses the rationale for adopting image-guidance approaches in radiotherapy, and the technology for achieving precision and accuracy in the context of different paradigms within the evolving radiation oncology practice. It also examines exciting advances in radiotherapy technology that suggest a convergence of radiotherapy practice in which patient-specific radiotherapy treatment courses are one of the most personalized forms of intervention in cancer medicine.

Key Points

  • Radiotherapy has rapidly adopted technologies that integrate imaging and treatment

  • There are multiple paradigms in radiation oncology that are enabled by the integration of imaging into design, guidance, and assessment of radiotherapy

  • An emerging '4D hypothesis' promises to increase the therapeutic ratio of radiotherapy for the individual patient, provided that key clinical and technological issues can be addressed

  • Novel treatment devices, algorithms, and information technologies will enable a greater degree of personalization of radiotherapy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Image-guidance capable radiation treatment machines.
Figure 2: Targeting radiotherapy before each fraction.
Figure 3: The paradigms in radiotherapy innovation.
Figure 4: The development of MRI-guided radiotherapy.
Figure 5: Integration of imaging information in designing treatments.

Similar content being viewed by others

References

  1. Moller, T. R., Einhorn, N., Lindholm, C., Ringborg, U. & Svensson, H. Radiotherapy and cancer care in Sweden. Acta Oncol. 42, 366–375 (2003).

    Article  PubMed  Google Scholar 

  2. Delaney, G., Jacob, S., Featherstone, C. & Barton, M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104, 1129–1137 (2005).

    Article  PubMed  Google Scholar 

  3. Brahme, A. Dosimetric requirements in radiation therapy. Acta Radiol. Oncol. 23, 379 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Hendee, W. R. & Herman, M. G. Improving patient safety in radiation oncology. Med. Phys. 38, 78–82 (2011).

    Article  PubMed  Google Scholar 

  5. ICRU50. ICRU report 50: Prescribing, recording, and reporting photon beam therapy (International Commission on Radiation Units & Measurements, Bethesda, MD, 1993).

  6. ICRU62. ICRU report 62: Prescribing, recording, reporting photon beam therapy (Suppl. to ICRU 50) (International Commission on Radiation Units & Measurements, Bethesda, MD, 1999).

  7. ICRU83. ICRU report 83: Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). 10 (2010).

  8. Simpson, D. R. et al. A survey of image-guided radiation therapy use in the United States. Cancer 116, 3953–3960 (2010).

    Article  PubMed  Google Scholar 

  9. Molloy, J. A. et al. Quality assurance of U. S.-guided external beam radiotherapy for prostate cancer: report of AAPM Task Group 154. Med. Phys. 38, 857–871 (2011).

    Article  PubMed  Google Scholar 

  10. Keall, P. J. et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med. Phys. 33, 3874–3900 (2006).

    Article  PubMed  Google Scholar 

  11. Langen, K. M. & Jones, D. T. Organ motion and its management. Int. J. Radiat. Oncol. Biol. Phys. 50, 265–278 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Millender, L. E., Aubin, M., Pouliot, J., Shinohara, K. & Roach, M. 3rd . Daily electronic portal imaging for morbidly obese men undergoing radiotherapy for localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 59, 6–10 (2004).

    Article  PubMed  Google Scholar 

  13. Keall, P. J. et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med. Phys. 33, 3874–3900 (2006).

    Article  PubMed  Google Scholar 

  14. Wolthaus, J. W. et al. Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 70, 1229–1238 (2008).

    Article  PubMed  Google Scholar 

  15. Korreman, S., Persson, G., Nygaard, D., Brink, C. & Juhler-Nottrup, T. Respiration-correlated image guidance is the most important radiotherapy motion management strategy for most lung cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 83, 1338–1343 (2012).

    Article  PubMed  Google Scholar 

  16. Moseley, D. J. et al. Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 67, 942–953 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kupelian, P. A. et al. Daily variations in delivered doses in patients treated with radiotherapy for localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 66, 876–882 (2006).

    Article  PubMed  Google Scholar 

  18. Kupelian, P. A. et al. Evaluation of image-guidance strategies in the treatment of localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 1151–1157 (2008).

    Article  PubMed  Google Scholar 

  19. ASRT Foundation. Radiation Therapy, Management and Dosimetry Workplace Survey [online], (2010).

  20. Zelefsky, M. J. et al. Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 84, 125–129 (2012).

    Article  PubMed  Google Scholar 

  21. Bissonnette, J. P. & Medlam, G. Trend analysis of radiation therapy incidents over seven years. Radiother. Oncol. 96, 139–144 (2010).

    Article  PubMed  Google Scholar 

  22. Peters, L. J. et al. Critical impact of radiotherapy protocol compliance and quality in the treatment of advanced head and neck cancer: results from TROG 02.02. J. Clin. Oncol. 28, 2996–3001 (2010).

    Article  PubMed  Google Scholar 

  23. van Herk, M. Errors and margins in radiotherapy. Semin. Radiat. Oncol. 14, 52–64 (2004).

    Article  PubMed  Google Scholar 

  24. Den, R. B. et al. Daily image guidance with cone-beam computed tomography for head-and-neck cancer intensity-modulated radiotherapy: a prospective study. Int. J. Radiat. Oncol. Biol. Phys. 76, 1353–1359 (2010).

    Article  PubMed  Google Scholar 

  25. Nutting, C. M. et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol. 12, 127–136 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen, A. M. et al. Evaluation of the planning target volume in the treatment of head and neck cancer with intensity-modulated radiotherapy: what is the appropriate expansion margin in the setting of daily image guidance? Int. J. Radiat. Oncol. Biol. Phys. 81, 943–949 (2011).

    Article  PubMed  Google Scholar 

  27. Crehange, G. et al. Clinical impact of margin reduction on late toxicity and short-term biochemical control for patients treated with daily on-line image guided IMRT for prostate cancer. Radiother. Oncol. 103, 244–246 (2012).

    Article  PubMed  Google Scholar 

  28. Engels, B., Soete, G., Verellen, D. & Storme, G. Conformal arc radiotherapy for prostate cancer: increased biochemical failure in patients with distended rectum on the planning computed tomogram despite image guidance by implanted markers. Int. J. Radiat. Oncol. Biol. Phys. 74, 388–391 (2009).

    Article  PubMed  Google Scholar 

  29. Potters, L. et al. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) practice guidelines for image-guided radiation therapy (IGRT). Int. J. Radiat. Oncol. Biol. Phys. 76, 319–325 (2010).

    Article  PubMed  Google Scholar 

  30. Pollack, A. et al. Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 53, 1097–1105 (2002).

    Article  PubMed  Google Scholar 

  31. Epp, E. R. & Suit, H. D. The need for on-line portal images of diagnostic x-ray quality from linear accelerators. Int. J. Radiat. Oncol. Biol. Phys. 30, 495–496 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Martin, J. M. et al. Image guided dose escalated prostate radiotherapy: still room to improve. Radiat. Oncol. 4, 50 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Timmerman, R. et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 303, 1070–1076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Greco, C. et al. Predictors of local control after single-dose stereotactic image-guided intensity-modulated radiotherapy for extracranial metastases. Int. J. Radiat. Oncol. Biol. Phys. 79, 1151–1157 (2011).

    Article  PubMed  Google Scholar 

  35. Lee, M. T. et al. Phase I study of individualized stereotactic body radiotherapy of liver metastases. J. Clin. Oncol. 27, 1585–1591 (2009).

    Article  PubMed  Google Scholar 

  36. Hall, E. & Giacca, A. J. Radiobiology for the Radiologist (Lippincott, Williams & Wilkins, Philidelphia, 2006).

    Google Scholar 

  37. Brenner, D. J. & Hall, E. J. Fractionation and protraction for radiotherapy of prostate carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 43, 1095–1101 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Garcia-Barros, M. et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, Y. et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114, 589–595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wong, R. K. et al. A one-step cone-beam CT-enabled planning-to-treatment model for palliative radiotherapy-from development to implementation. Int. J. Radiat. Oncol. Biol. Phys. 84, 834–440 (2012).

    Article  PubMed  Google Scholar 

  41. Ling, C. C. et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int. J. Radiat. Oncol. Biol. Phys. 47, 551–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Lambin, P. et al. The ESTRO Breur Lecture 2009. From population to voxel-based radiotherapy: exploiting intra-tumour and intra-organ heterogeneity for advanced treatment of non-small cell lung cancer. Radiother. Oncol. 96, 145–152 (2010).

    Article  PubMed  Google Scholar 

  43. Gregoire, V., Haustermans, K., Geets, X., Roels, S. & Lonneux, M. PET-based treatment planning in radiotherapy: a new standard? J. Nucl. Med. 48 (Suppl. 1), 68S–77S (2007).

    CAS  PubMed  Google Scholar 

  44. Moman, M. R. et al. Focal salvage guided by T2-weighted and dynamic contrast-enhanced magnetic resonance imaging for prostate cancer recurrences. Int. J. Radiat. Oncol. Biol. Phys. 76, 741–746 (2010).

    Article  PubMed  Google Scholar 

  45. Daisne, J. F. et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 233, 93–100 (2004).

    Article  PubMed  Google Scholar 

  46. Lockhart, C. M. et al. Quantifying and reducing the effect of calibration error on variability of PET/CT standardized uptake value measurements. J. Nucl. Med. 52, 218–224 (2011).

    Article  PubMed  Google Scholar 

  47. Nehmeh, S. A. et al. Reproducibility of intratumor distribution of (18)F-fluoromisonidazole in head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 235–242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Christian, N. et al. The limitation of PET imaging for biological adaptive-IMRT assessed in animal models. Radiother. Oncol. 91, 101–106 (2009).

    Article  PubMed  Google Scholar 

  49. Bowen, S. R., Flynn, R. T., Bentzen, S. M. & Jeraj, R. On the sensitivity of IMRT dose optimization to the mathematical form of a biological imaging-based prescription function. Phys. Med. Biol. 54, 1483–1501 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. de Geus-Oei, L. F. et al. Chemotherapy response evaluation with 18F-FDG PET in patients with non-small cell lung cancer. J. Nucl. Med. 48, 1592–1598 (2007).

    Article  PubMed  Google Scholar 

  51. van Baardwijk, A. et al. Time trends in the maximal uptake of FDG on PET scan during thoracic radiotherapy. A prospective study in locally advanced non-small cell lung cancer (NSCLC) patients. Radiother. Oncol. 82, 145–152 (2007).

    Article  PubMed  Google Scholar 

  52. Eschmann, S. M. et al. Repeat 18F-FDG PET for monitoring neoadjuvant chemotherapy in patients with stage III non-small cell lung cancer. Lung Cancer 55, 165–171 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Aerts, H. J. et al. Identification of residual metabolic-active areas within NSCLC tumours using a pre-radiotherapy FDG-PET-CT scan: a prospective validation. Lung Cancer 75, 73–76 (2012).

    Article  PubMed  Google Scholar 

  54. Yan, D., Vicini, F., Wong, J. & Martinez, A. Adaptive radiation therapy. Phys. Med. Biol. 42, 123–132 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Siker, M. L., Tome, W. A. & Mehta, M. P. Tumor volume changes on serial imaging with megavoltage CT for non-small-cell lung cancer during intensity-modulated radiotherapy: How reliable, consistent, and meaningful is the effect? Int. J. Radiat. Oncol. Biol. Phys. 66, 135–141 (2006).

    Article  PubMed  Google Scholar 

  56. Barker, J. L. Jr et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int. J. Radiat. Oncol. Biol. Phys. 59, 960–970 (2004).

    Article  PubMed  Google Scholar 

  57. Mayr, N. A. et al. Translating response during therapy into ultimate treatment outcome: a personalized 4-dimensional MRI tumor volumetric regression approach in cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 76, 719–727 (2010).

    Article  PubMed  Google Scholar 

  58. Martinez, A. A. et al. Improvement in dose escalation using the process of adaptive radiotherapy combined with three-dimensional conformal or intensity-modulated beams for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 50, 1226–1234 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Gospodarowicz, M. & O'Sullivan, B. Prognostic Factors in Oncology (UICC, Geneva, Switzerland, 2003).

    Book  Google Scholar 

  60. Goldie, J. H. & Coldman, A. J. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep. 63, 1727–1733 (1979).

    CAS  PubMed  Google Scholar 

  61. Schwartz, D. L. et al. Adaptive radiotherapy for head-and-neck cancer: initial clinical outcomes from a prospective trial. Int. J. Radiat. Oncol. Biol. Phys. 83, 986–993 (2012).

    Article  PubMed  Google Scholar 

  62. Brabbins, D. et al. A dose-escalation trial with the adaptive radiotherapy process as a delivery system in localized prostate cancer: analysis of chronic toxicity. Int. J. Radiat. Oncol. Biol. Phys. 61, 400–408 (2005).

    Article  PubMed  Google Scholar 

  63. Stewart, J. M. P. et al. Automated weekly online replanning for IMRT of cervix cancer. Int. J. Radiat. Oncol. Biol. Phys. 72, S18 (2008).

    Article  Google Scholar 

  64. Lim, K. et al. Pelvic radiotherapy for cancer of the cervix: is what you plan actually what you deliver? Int. J. Radiat. Oncol. Biol. Phys. 74, 304–312 (2009).

    Article  PubMed  Google Scholar 

  65. Potter, R. et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother. Oncol. 83, 148–155 (2007).

    Article  PubMed  Google Scholar 

  66. Guckenberger, M., Richter, A., Wilbert, J., Flentje, M. & Partridge, M. Adaptive radiotherapy for locally advanced non-small-cell lung cancer does not underdose the microscopic disease and has the potential to increase tumor control. Int. J. Radiat. Oncol. Biol. Phys. 81, e275–e282 (2012).

    Article  Google Scholar 

  67. Yan, D. Adaptive radiotherapy: merging principle into clinical practice. Semin. Radiat. Oncol. 20, 79–83 (2010).

    Article  PubMed  Google Scholar 

  68. Purdie, T. G., Dinniwell, R. E., Letourneau, D., Hill, C. & Sharpe, M. B. Automated planning of tangential breast intensity-modulated radiotherapy using heuristic optimization. Int. J. Radiat. Oncol. Biol. Phys. 81, 575–583 (2011).

    Article  PubMed  Google Scholar 

  69. Raaymakers, B. W. et al. Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys. Med. Biol. 54, N229–N237 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Fallone, B. G. et al. First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med. Phys. 36, 2084–2088 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Karlsson, M., Karlsson, M. G., Nyholm, T., Amies, C. & Zackrisson, B. Dedicated magnetic resonance imaging in the radiotherapy clinic. Int. J. Radiat. Oncol. Biol. Phys. 74, 644–651 (2009).

    Article  PubMed  Google Scholar 

  72. Moffat, B. A. et al. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc. Natl Acad. Sci USA 102, 5524–5529 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jaffray, D. A., Carlone, M., Menard, C. & Breen, S. in Society of Photo-Optical Instrumentation and Engineering (SPIE) Vol. 7622 (Eds Samei, E. & Pelc, N. J.) 762202-762202-12 (San Diego, CA, 2010).

    Google Scholar 

  74. Raaymakers, B. W., Raaijmakers, A. J. & Lagendijk, J. J. Feasibility of MRI guided proton therapy: magnetic field dose effects. Phys. Med. Biol. 53, 5615–5622 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Wei, Z. et al. Robot-assisted 3D-TRUS guided prostate brachytherapy: system integration and validation. Med. Phys. 31, 539–548 (2004).

    Article  PubMed  Google Scholar 

  76. Yan, D., Jaffray, D. A. & Wong, J. W. A model to accumulate fractionated dose in a deforming organ. Int. J. Radiat. Oncol. Biol. Phys. 44, 665–675 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Brock, K. K., Sharpe, M. B., Dawson, L. A., Kim, S. M. & Jaffray, D. A. Accuracy of finite element model-based multi-organ deformable image registration. Med. Phys. 32, 1647–1659 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Jaffray, D. A., Lindsay, P. E., Brock, K. K., Deasy, J. O. & Tome, W. A. Accurate accumulation of dose for improved understanding of radiation effects in normal tissue. Int. J. Radiat. Oncol. Biol. Phys. 76, S135–S139 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Paganetti, H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys. Med. Biol. 57, R99–R117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Letourneau, D. et al. Semiautomatic vertebrae visualization, detection, and identification for online palliative radiotherapy of bone metastases of the spine. Med. Phys. 35, 367–376 (2008).

    Article  PubMed  Google Scholar 

  81. Lambrecht, M. et al. The use of FDG-PET/CT and diffusion-weighted magnetic resonance imaging for response prediction before, during and after preoperative chemoradiotherapy for rectal cancer. Acta Oncol. 49, 956–963 (2010).

    Article  PubMed  Google Scholar 

  82. Zhang, C. et al. 18F-FDG-PET evaluation of treatment response to neo-adjuvant therapy in patients with locally advanced rectal cancer: A meta-analysis. Int. J. Cancer 131, 2604–2611 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Edet-Sanson, A. et al. Serial assessment of FDG-PET FDG uptake and functional volume during radiotherapy (RT) in patients with non-small cell lung cancer (NSCLC). Radiother. Oncol. 102, 251–257 (2012).

    Article  PubMed  Google Scholar 

  84. Souhami, L. et al. Weekly cisplatin plus external beam radiotherapy and high dose rate brachytherapy in patients with locally advanced carcinoma of the cervix. Int. J. Radiat. Oncol. Biol. Phys. 27, 871–878 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Lim, K. et al. Cervical cancer regression measured using weekly magnetic resonance imaging during fractionated radiotherapy: radiobiologic modeling and correlation with tumor hypoxia. Int. J. Radiat. Oncol. Biol. Phys. 70, 126–133 (2008).

    Article  PubMed  Google Scholar 

  86. Stewart, J. et al. Automated weekly replanning for intensity-modulated radiotherapy of cervix cancer. Int. J. Radiat. Oncol. Biol. Phys. 78, 350–358 (2010).

    Article  PubMed  Google Scholar 

  87. Mayr, N. A. et al. Ultra-early predictive assay for treatment failure using functional magnetic resonance imaging and clinical prognostic parameters in cervical cancer. Cancer 116, 903–912 (2010).

    Article  PubMed  Google Scholar 

  88. Ang, K. K. et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 363, 24–35 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Voduc, K. D. et al. Breast cancer subtypes and the risk of local and regional relapse. J. Clin. Oncol. 28, 1684–1691 (2010).

    Article  PubMed  Google Scholar 

  90. Shi, W. W. et al. Post-menopausal women with luminal A subtype might not require breast radiotherapy: preliminary results from a randomized clinical trial of tamoxifen + radiation [abstract]. Cancer Res. 72, a1032 (2012).

    Article  Google Scholar 

  91. Griffin, A. M. et al. Radiation planning comparison for superficial tissue avoidance in radiotherapy for soft tissue sarcoma of the lower extremity. Int. J. Radiat. Oncol. Biol. Phys. 67, 847–856 (2007).

    Article  PubMed  Google Scholar 

  92. O'Sullivan, B. et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: a randomised trial. Lancet 359, 2235–2241 (2002).

    Article  PubMed  Google Scholar 

  93. Rieke, V. & Butts Pauly, K. MR thermometry. J. Magn. Reson. Imaging 27, 376–390 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  94. de Smet, M., Heijman, E., Langereis, S., Hijnen, N. M. & Grull, H. Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J. Control Release 150, 102–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Czarnota, G. J. et al. Tumor radiation response enhancement by acoustical stimulation of the vasculature. Proc. Natl Acad. Sci. USA 109, E2033–E2041 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Eisbruch, A. et al. Dysphagia and aspiration after chemoradiotherapy for head-and-neck cancer: which anatomic structures are affected and can they be spared by IMRT? Int. J. Radiat. Oncol. Biol. Phys. 60, 1425–1439 (2004).

    Article  PubMed  Google Scholar 

  97. O'Daniel, J. C. et al. Parotid gland dose in intensity-modulated radiotherapy for head and neck cancer: is what you plan what you get? Int. J. Radiat. Oncol. Biol. Phys. 69, 1290–1296 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Greco, C. et al. Predictors of local control after single-dose stereotactic image-guided intensity-modulated radiotherapy for extracranial metastases. Int. J. Radiat. Oncol. Biol. Phys. 79, 1151–1157 (2011).

    Article  PubMed  Google Scholar 

  99. Lin, Z. et al. The influence of changes in tumor hypoxia on dose-painting treatment plans based on 18F-FMISO positron emission tomography. Int. J. Radiat. Oncol. Biol. Phys. 70, 1219–1228 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Pouliot, J. et al. Inverse planning for HDR prostate brachytherapy used to boost dominant intraprostatic lesions defined by magnetic resonance spectroscopy imaging. Int. J. Radiat. Oncol. Biol. Phys. 59, 1196–1207 (2004).

    Article  PubMed  Google Scholar 

  101. Aerts, H. J. et al. Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy 18Fluorodeoxyglucose-PET-CT scan. Radiother. Oncol. 91, 386–392 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ghilezan, M., Yan, D. & Martinez, A. Adaptive radiation therapy for prostate cancer. Semin. Radiat. Oncol. 20, 130–137 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D. A. Jaffray would like to acknowledge the broad and collaborative community of researchers and clinicians at the Princess Margaret Cancer Centre for their valuable comments and discussions that contributed to some of the insights provided in this Review. He would like to recognize the support of the Princess Margaret Cancer Foundation, the Mary and Orey Fidani Family Chair in Radiation Physics, the Ontario Institute for Cancer Research, and the Canadian Institutes for Health Research for their support, without which the perspectives offered in this Review would be diminished. Finally, the editorial staff at Nature Reviews Clinical Oncology have been particularly supportive and this is greatly appreciated.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

D. A. Jaffray declares he is a consultant for Elekta and RaySearch Laboratories. He receives grant support from Elekta, Philips Healthcare, RaySearch, IMRIS and General Electric, and he holds patents with Elekta, Philips Healthcare and IMRIS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaffray, D. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol 9, 688–699 (2012). https://doi.org/10.1038/nrclinonc.2012.194

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.194

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer