Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

The influence of race and ethnicity on the biology of cancer

Abstract

It is becoming clear that some of the differences in cancer risk, incidence and survival among people of different racial and ethnic backgrounds can be attributed to biological factors. However, identifying these factors and exploiting them to help eliminate cancer disparities has proved challenging. With this in mind, we asked four scientists for their opinions on the most crucial advances, as well as the challenges and what the future holds for this important emerging area of research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kolonel, L. N., Altshuler, D. & Henderson, B. E. The multiethnic cohort study: exploring genes, lifestyle and cancer risk. Nature Rev. Cancer 4, 519–527 (2004).

    Article  CAS  Google Scholar 

  2. Kolonel, L. N. et al. A multiethnic cohort in Hawaii and Los Angeles: baseline characteristics. Am. J. Epidemiol. 151, 346–357 (2000).

    Article  CAS  Google Scholar 

  3. Setiawan, V. W. et al. Breast cancer risk factors defined by estrogen and progesterone receptor status: the multiethnic cohort study. Am. J. Epidemiol. 169, 1251–1259 (2009).

    Article  Google Scholar 

  4. Haiman, C. A. et al. Ethnic and racial differences in the smoking-related risk of lung cancer. N. Engl. J. Med. 354, 333–342 (2006).

    Article  CAS  Google Scholar 

  5. Amundadottir, L. T. et al. A common variant associated with prostate cancer in European and African populations. Nature Genet. 38, 652–658 (2006).

    Article  CAS  Google Scholar 

  6. Freedman, M. L. et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc. Natl Acad. Sci. USA 103, 14068–14073 (2006).

    Article  CAS  Google Scholar 

  7. Haiman, C. A. et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nature Genet. 39, 638–644 (2007).

    Article  CAS  Google Scholar 

  8. Haiman, C. A. et al. Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nature Genet. 43, 570–573 (2011).

    Article  CAS  Google Scholar 

  9. Haiman, C. A. et al. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer. Nature Genet. 43, 1210–1214 (2011).

    Article  CAS  Google Scholar 

  10. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29 (2012).

    Article  Google Scholar 

  11. Hoffman, R. M. et al. Racial and ethnic differences in advanced-stage prostate cancer: the Prostate Cancer Outcomes Study. J. Natl Cancer Inst. 93, 388–395 (2001).

    Article  CAS  Google Scholar 

  12. Robbins, A. S., Whittemore, A. S. & Thom, D. H. Differences in socioeconomic status and survival among white and black men with prostate cancer. Am. J. Epidemiol. 151, 409–416 (2000).

    Article  CAS  Google Scholar 

  13. Evans, S., Metcalfe, C., Ibrahim, F., Persad, R. & Ben-Shlomo, Y. Investigating Black-White differences in prostate cancer prognosis: a systematic review and meta-analysis. Int. J. Cancer 123, 430–435 (2008).

    Article  CAS  Google Scholar 

  14. Devgan, S. A. et al. Genetic variation of 3 β-hydroxysteroid dehydrogenase type II in three racial/ethnic groups: implications for prostate cancer risk. Prostate 33, 9–12 (1997).

    Article  CAS  Google Scholar 

  15. Guo, Y., Sigman, D. B., Borkowski, A. & Kyprianou, N. Racial differences in prostate cancer growth: apoptosis and cell proliferation in Caucasian and African-American patients. Prostate 42, 130–136 (2000).

    Article  CAS  Google Scholar 

  16. Shuch, B. et al. Racial disparity of epidermal growth factor receptor expression in prostate cancer. J. Clin. Oncol. 22, 4725–4729 (2004).

    Article  CAS  Google Scholar 

  17. Yeager, M. et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nature Genet. 39, 645–649 (2007).

    Article  CAS  Google Scholar 

  18. Wallace, T. A. et al. Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res. 68, 927–936 (2008).

    Article  CAS  Google Scholar 

  19. Reams, R. R. et al. Microarray comparison of prostate tumor gene expression in African-American and Caucasian American males: a pilot project study. Infect. Agent Cancer 4, S3 (2009).

    Article  Google Scholar 

  20. Eheman, C. et al. Annual Report to the Nation on the status of cancer, 1975–2008, featuring cancers associated with excess weight and lack of sufficient physical activity. Cancer 118, 2338–2366 (2012).

    Article  Google Scholar 

  21. Dawood, S., et al. Trends in survival over the past two decades among white and black patients with newly diagnosed stage IV breast cancer. J. Clin. Oncol. 26, 4892–4898 (2008).

    Article  Google Scholar 

  22. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  Google Scholar 

  23. Sotiriou, C. et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sci. USA 100, 10393–10398 (2003).

    Article  CAS  Google Scholar 

  24. Carey, L. A. et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295, 2492–2502 (2006).

    Article  CAS  Google Scholar 

  25. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  Google Scholar 

  26. Nguyen, L. V., Vanner, R., Dirks, P. & Eaves, C. J. Cancer stem cells: an evolving concept. Nature Rev. Cancer 12, 133–143 (2012).

    Article  CAS  Google Scholar 

  27. Dean, M., Fojo, T. & Bates, S. Tumor stem cells and drug resistance. Nature Rev. Cancer 5, 275–284 (2005).

    Article  CAS  Google Scholar 

  28. Li, X. et al. Resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl Cancer Inst. 100, 9672–9679 (2008).

    Google Scholar 

  29. Creighton, C. J. et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl Acad. Sci. USA 106, 13820–13825 (2009).

    Article  CAS  Google Scholar 

  30. Shimono, Y. et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138, 592–603 (2009).

    Article  CAS  Google Scholar 

  31. Flegal, K. M. et al. Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303, 235–241 (2010).

    Article  CAS  Google Scholar 

  32. Grivennikov, S. I., Gretin, F. R. & Karin, M. Immunity, Inflammation, and Cancer. Cell 140, 883–899 (2010).

    Article  CAS  Google Scholar 

  33. Liu, S. et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 71, 614–624 (2011).

    Article  CAS  Google Scholar 

  34. Luedi, P. P. et al. Computational and experimental identification of novel human imprinted genes. Genome Res. 17, 1723–1730 (2007).

    Article  CAS  Google Scholar 

  35. Dolinoy, D. C., Huang, D. & Jirtle, R. L. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc. Natl Acad. Sci. USA 104, 13056–13061 (2007).

    Article  CAS  Google Scholar 

  36. Dolinoy, D. C., Weidman, J. R., Waterland, R. A. & Jirtle, R. L. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ. Health Perspect. 114, 567–572 (2006).

    Article  CAS  Google Scholar 

  37. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    Article  Google Scholar 

  38. Parkin, D. M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer 118, 3030–3044 (2006).

    Article  CAS  Google Scholar 

  39. Hardy, J. & Singleton, A. Genomewide association studies and human disease. N. Engl. J. Med. 360, 1759–1768 (2009).

    Article  CAS  Google Scholar 

  40. Chung, C. C. & Chanock, S. J. Current status of genome-wide association studies in cancer. Hum. Genet. 130, 59–78 (2011).

    Article  Google Scholar 

  41. Hung, R. J. et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452, 633–637 (2008).

    Article  CAS  Google Scholar 

  42. Thorgeirsson, T. E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638–642 (2008).

    Article  CAS  Google Scholar 

  43. Amos, C. I. et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nature Genet. 40, 616–622 (2008).

    Article  CAS  Google Scholar 

  44. Wu, C. et al. Genetic variants on chromosome 15q25 associated with lung cancer risk in Chinese populations. Cancer Res. 69, 5065–5072 (2009).

    Article  CAS  Google Scholar 

  45. Miki, D. et al. Variation in TP63 is associated with lung adenocarcinoma susceptibility in Japanese and Korean populations. Nature Genet. 42, 893–896 (2010).

    Article  CAS  Google Scholar 

  46. Cai, Q. et al. Replication and functional genomic analyses of the breast cancer susceptibility locus at 6q25.1 generalize its importance in women of chinese, Japanese, and European ancestry. Cancer Res. 71, 1344–1355 (2011).

    Article  CAS  Google Scholar 

  47. Haiman, C. A. et al. Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans. PLoS Genet. 7, e1001387 (2011).

    Article  CAS  Google Scholar 

  48. Fu, J., Festen, E. A. & Wijmenga, C. Multi-ethnic studies in complex traits. Hum. Mol. Genet. 20, R206–R213 (2011).

    Article  CAS  Google Scholar 

  49. Xu, J. et al. Prostate cancer risk associated loci in African Americans. Cancer Epidemiol. Biomarkers Prev. 18, 2145–2149 (2009).

    Article  CAS  Google Scholar 

  50. Freedman, M. L. et al. Principles for the post-GWAS functional characterization of cancer risk loci. Nature Genet. 43, 513–518 (2011).

    Article  CAS  Google Scholar 

  51. Altshuler, D. M. et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

    Article  CAS  Google Scholar 

  52. Gravel, S. et al. Demographic history and rare allele sharing among human populations. Proc. Natl Acad. Sci. USA 108, 11983–11988 (2011).

    Article  CAS  Google Scholar 

  53. Zuk, O., Hechter, E., Sunyaev, S. R. & Lander, E. S. The mystery of missing heritability: genetic interactions create phantom heritability. Proc. Natl Acad. Sci. USA 109,1193–1198 (2012).

    Article  CAS  Google Scholar 

  54. Royal, C. D. & Dunston, G. M. Changing the paradigm from 'race' to human genome variation. Nature Genet. 36, S5–S7 (2004).

    Article  CAS  Google Scholar 

  55. Parra, E. J., Kittles, R. A. & Shriver, M. D. Implications of correlations between skin color and genetic ancestry for biomedical research. Nature Genet. 36, S54–S60 (2004).

    Article  CAS  Google Scholar 

  56. Rosenberg, N. A. et al. Genome-wide association studies in diverse populations. Nature Rev. Genet. 11, 356–366 (2010).

    Article  CAS  Google Scholar 

  57. Macilwain, C. Funding in 2011: East heats up as West cools down. Cell 144, 167–169 (2011).

    Article  CAS  Google Scholar 

  58. Haiman, C. A. & Stram, D. O. Exploring genetic susceptibility to cancer in diverse populations. Curr. Opin. Genet. Dev. 20, 330–335 (2010).

    Article  CAS  Google Scholar 

  59. Maher, B. Personal genomes: the case of the missing heritability. Nature 456, 18–21 (2008).

    Article  CAS  Google Scholar 

  60. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  Google Scholar 

  61. Eichler, E. E. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nature Rev. Genet. 11, 446–450 (2010).

    Article  CAS  Google Scholar 

  62. Hughes, L. et al. Assessing the clinical role of genetic markers of early-onset prostate cancer among high-risk men enrolled in prostate cancer early detection. Cancer Epidemiol. Biomarkers Prev. 21, 53–60 (2012).

    Article  CAS  Google Scholar 

  63. Lander, E. S. Initial impact of the sequencing of the human genome. Nature 470, 187–197 (2011).

    Article  CAS  Google Scholar 

  64. Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008).

    Article  CAS  Google Scholar 

  65. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  66. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  Google Scholar 

  67. Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    Article  CAS  Google Scholar 

  68. Boise, L. H. et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608 (1993).

    Article  CAS  Google Scholar 

  69. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  CAS  Google Scholar 

  70. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  Google Scholar 

  71. Zeggini, E. Next-generation association studies for complex traits. Nature Genet. 43, 287–288 (2011).

    Article  CAS  Google Scholar 

  72. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome - biological and translational implications. Nature Rev. Cancer 11, 726–734 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.E.H. is supported by the US National Institutes of Health (NIH) grants CA148537, CA136792 and CA054281. N.H.L. is supported by the NIH grants CA120316 and DK056108. V.S. apologizes in advance to the authors of articles that were not cited owing to reference limitations. H.S. is funded by the National Key Basic Research Program Grant (2011CB503805) and the National Natural Science Foundation of China (30972541 and 30901233), NIH grant (U19 CA148127) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brian E. Henderson, Norman H. Lee, Victoria Seewaldt or Hongbing Shen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Norman Lee's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, B., Lee, N., Seewaldt, V. et al. The influence of race and ethnicity on the biology of cancer. Nat Rev Cancer 12, 648–653 (2012). https://doi.org/10.1038/nrc3341

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3341

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer