Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Apoptosis and cancer: the genesis of a research field

Abstract

In multicellular organisms, the total number of cells is a balance between the cell-generating effects of mitosis and cell death that is induced through apoptosis. A disruption of this delicate balance can lead to the development of cancer. This Timeline article focuses on how the field of apoptosis biology has developed in the context of its contribution to our understanding of cell death, or lack of it, in the development of malignant disease. It traces the course of research from key discoveries in fundamental biology to potential therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The pathway from DNA damage to cancer.
Figure 2: Controlling cytochrome c release.
Figure 3: Signalling pathways in apoptosis.

References

  1. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 4, 239–257 (1972).

    Google Scholar 

  2. Vogt, C. Untersuchungen über die Entwicklungsgeschichte der Geburtshelferkröte. (Alytes obstetricians) 130 (Jent und Gassman, 1842).

    Google Scholar 

  3. Glucksmann, A. Cell death in normal vertebrate ontogeny. Biol. Rev. 26, 59–86 (1951).

    CAS  PubMed  Google Scholar 

  4. Saunders, J. W. Jr. Death in embryonic systems. Science 154, 604–612 (1966).

    PubMed  Google Scholar 

  5. Lockshin, R. A. & Williams, C. M. Programmed cell death – 1. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. J. Insect Physiol. 11, 123–133 (1965).

    CAS  PubMed  Google Scholar 

  6. Kerr, J. F. A histochemical study of hypertrophy and ishaemic injury or rat liver with special reference to changes in lysosomes. J. Pathol. Bacteriol. 90, 419–435 (1965).

    CAS  PubMed  Google Scholar 

  7. Wyllie, A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555–560 (1980).

    CAS  PubMed  Google Scholar 

  8. Wyllie, A. H., Kerr, J. F. & Currie, A. R. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251–306 (1980).

    CAS  PubMed  Google Scholar 

  9. Enari, M. et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50 (1998).

    CAS  PubMed  Google Scholar 

  10. Horvitz, H. R. Nobel lecture. Worms, life and death. Biosci. Rep. 5, 239–303 (2003).

    Google Scholar 

  11. Kerr, J. F., Winterford, C. M. & Harmon, B. V. Apoptosis. Its significance in cancer and cancer therapy. Cancer 73, 2013–2026 (1994).

    CAS  PubMed  Google Scholar 

  12. Lowe, S. W. et al. P53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 (1993).

    CAS  PubMed  Google Scholar 

  13. McGahon, A. et al. BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood 83, 1179–1187 (1994).

    CAS  PubMed  Google Scholar 

  14. Krammer, P. H. et al. CD95(APO-1/Fas)-mediated apoptosis in normal and malignant liver, colon, and hematopoietic cells. Adv. Cancer Res. 75, 251–273 (1998).

    CAS  PubMed  Google Scholar 

  15. Tsujimoto, Y. et al. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226, 1097–1099 (1984).

    CAS  PubMed  Google Scholar 

  16. Tsujimoto, Y. & Croce, C. M. Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc. Natl Acad. Sci. USA 83, 5214–5218 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cleary, M. L., Smith, S. D. & Sklar, J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 47, 19–28 (1986).

    CAS  PubMed  Google Scholar 

  18. Vaux, D. L. Early work on the function of Bcl-2, an interview with David Vaux. Cell Death Differ. 11, S28–S32 (2004).

    Google Scholar 

  19. Rowley, J. D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and giemsa staining. Nature 243, 290–293 (1973).

    CAS  PubMed  Google Scholar 

  20. Vaux, D. L, Cory, S. & Adams, J. M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988).

    CAS  PubMed  Google Scholar 

  21. Tsujimoto, Y. Stress-resistance conferred by high level of bcl-2 alpha protein in human B lymphoblastoid cell. Oncogene 11, 1331–1336 (1989).

    Google Scholar 

  22. Williams, G. T. et al. Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature 343, 76–79 (1990).

    CAS  PubMed  Google Scholar 

  23. Rodriguez-Tarduchy, G., Collins, M. & López-Rivas, A. Regulation of apoptosis in interleukin-3-dependent hemopoietic cells by interleukin-3 and calcium ionophores. EMBO J. 9, 2997–3002 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Crompton, T. IL3-dependent cells die by apoptosis on removal of their growth factor. Growth Factors 4, 109–116 (1991).

    CAS  PubMed  Google Scholar 

  25. Reed, J. C. et al. Oncogenic potential of bcl-2 demonstrated by gene transfer. Nature 336, 259–261 (1988).

    CAS  PubMed  Google Scholar 

  26. McDonnell, T. J. et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57, 79–88 (1989).

    CAS  PubMed  Google Scholar 

  27. Reed, J. C. et al. Antisense-mediated inhibition of BCL2 protooncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides. Cancer Res. 50, 6565–6570 (1990).

    CAS  PubMed  Google Scholar 

  28. Hockenbery, D. et al. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334–336 (1990).

    CAS  PubMed  Google Scholar 

  29. Liu, X. et al. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157 (1996).

    CAS  PubMed  Google Scholar 

  30. Yang, J. et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129–1132 (1997).

    CAS  PubMed  Google Scholar 

  31. Creagh, E. M., Conroy, H. & Martin, S. J. Caspase-activation pathways in apoptosis and immunity. Immunol. Rev. 193, 10–21 (2003).

    CAS  PubMed  Google Scholar 

  32. Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163 (2007).

    CAS  PubMed  Google Scholar 

  33. Boise, L. H. et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608 (1993).

    CAS  PubMed  Google Scholar 

  34. Gibson, L. et al. bcl-w, a novel member of the bcl-2 family, promotes cell survival. Oncogene 13, 665–675 (1996 ).

    CAS  PubMed  Google Scholar 

  35. Kozopas, K. M. et al. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc. Natl Acad. Sci. USA 90, 3516–3520 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    CAS  PubMed  Google Scholar 

  37. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    CAS  PubMed  Google Scholar 

  38. Oltvai, Z. N., Milliman, C. L. & Korsmeyer, S. J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609–619 (1993).

    CAS  PubMed  Google Scholar 

  39. Chittenden, T. et al. Induction of apoptosis by the Bcl-2 homologue Bak. Nature 374, 733–736 (1995).

    CAS  PubMed  Google Scholar 

  40. O'Connor, L. et al. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J. 17, 384–395 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, K. et al. BID: a novel BH3 domain-only death agonist. Genes Dev. 10, 2859–2869 (1996).

    CAS  PubMed  Google Scholar 

  42. Yang, E. et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80, 285–291 (1995).

    CAS  PubMed  Google Scholar 

  43. Yip, K. W. & Reed, J. C. Bcl-2 family proteins and cancer. Oncogene 27, 6398–6406 (2008).

    CAS  PubMed  Google Scholar 

  44. Monni, O. et al. BCL2 over-expression associated with chromosomal amplification in diffuse large B-cell lymphoma. Blood 90, 1168–1174 (1997).

    CAS  PubMed  Google Scholar 

  45. Ikegaki, N. et al. Expression of bcl-2 in small cell lung carcinoma cells. Cancer Res. 54, 6–8 (1994).

    CAS  PubMed  Google Scholar 

  46. Hanada, M. et al. bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 82, 1820–1828 (1993).

    CAS  PubMed  Google Scholar 

  47. Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA 102, 13944–13949 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Miyashita, T. et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 6, 1799–1805 (1994).

    Google Scholar 

  49. Miyashita, T. & Reed, J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293–299 (1995).

    CAS  PubMed  Google Scholar 

  50. Oda, E. et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058 (2000).

    CAS  PubMed  Google Scholar 

  51. Sax, J. K. et al. BID regulation by p53 contributes to chemosensitivity. Nature Cell Biol. 11, 842–849 (2002).

    Google Scholar 

  52. Yu, J., Zhang, L., Hwang, P. M., Kinzler, K. W. & Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7, 673–682 (2001).

    CAS  PubMed  Google Scholar 

  53. Nakano, K. & Vousden, K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683–694 (2001).

    CAS  PubMed  Google Scholar 

  54. Ranger, A. M. et al. Bad-deficient mice develop diffuse large B cell lymphoma. Proc. Natl Acad. Sci. USA 100, 9324–9329 (2003).

    PubMed  PubMed Central  Google Scholar 

  55. Zinkel, S. S. et al. A role for proapoptotic BID in the DNA-damage response. Cell 122, 579–591 (2005).

    CAS  PubMed  Google Scholar 

  56. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    CAS  PubMed  Google Scholar 

  57. Gascoyne, R. D. et al. Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin's lymphoma. Blood 90, 244–251 (1997).

    CAS  PubMed  Google Scholar 

  58. Gobe, G. E. et al. Apoptosis and expression of Bcl-2, Bcl-XL, and Bax in renal cell carcinomas. Cancer Invest. 20, 324–332 (2002).

    CAS  PubMed  Google Scholar 

  59. Ayhan, A. et al. Loss of heterozygosity at the bcl-2 gene locus and expression of bcl-2 in human gastric and colorectal carcinomas. Jpn J. Cancer Res. 85, 584–591 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Castle, V. P. et al. Expression of the apoptosis-suppressing protein bcl-2, in neuroblastoma is associated with unfavorable histology and N-myc amplification. Am. J. Pathol. 143, 1543–1550 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Casado, S. et al. Predictive value of P53, BCL-2, and BAX in advanced head and neck carcinoma. Am. J. Clin. Oncol. 25, 588–590 (2002).

    PubMed  Google Scholar 

  62. Gradilone, A. et al. Survivin, bcl-2, bax, and bcl-X gene expression in sentinel lymph nodes from melanoma patients. J. Clin. Oncol. 21, 306–312 (2003). .

    CAS  PubMed  Google Scholar 

  63. Stavropoulos, N. E. et al. Prognostic significance of p53, bcl-2 and Ki-67 in high risk superficial bladder cancer. Anticancer Res. 22, 3759–3764 (2002).

    PubMed  Google Scholar 

  64. Chang, J. et al. Survival of patients with metastatic breast carcinoma: importance of prognostic markers of the primary tumor. Cancer 97, 545–553 (2003).

    PubMed  Google Scholar 

  65. Bargou, R. C. et al. Expression of the bcl-2 gene family in normal and malignant breast tissue: low bax-alpha expression in tumor cells correlates with resistance towards apoptosis. Int. J. Cancer. 60, 854–859 (1995).

    CAS  PubMed  Google Scholar 

  66. Krajewski, S. et al. Reduced expression of proapoptotic gene BAX is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res. 55, 4471–4478 (1995).

    CAS  PubMed  Google Scholar 

  67. Sjöström, J. et al. A multivariate analysis of tumour biological factors predicting response to cytotoxic treatment in advanced breast cancer. Br. J. Cancer 78, 812–815 (1998).

    PubMed  PubMed Central  Google Scholar 

  68. Krajewski, S. et al. Prognostic significance of apoptosis regulators in breast cancer. Endocr. Relat. Cancer 6, 29–40 (1999).

    CAS  PubMed  Google Scholar 

  69. Kymionis, G. D. et al. Can expression of apoptosis genes, bcl-2 and bax, predict survival and responsiveness to chemotherapy in node-negative breast cancer patients? J. Surg. Res. 99, 161–168 (2001).

    CAS  PubMed  Google Scholar 

  70. Letai, A. G. Diagnosing and exploiting cancer's addiction to blocks in apoptosis. Nature Rev. Cancer 8, 121–132 (2008).

    CAS  Google Scholar 

  71. Sentman, C. L. et al. bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67, 879–888 (1991).

    CAS  PubMed  Google Scholar 

  72. Webb, A. et al. BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 349, 1137–1141 (1997).

    CAS  PubMed  Google Scholar 

  73. Lessene, G., Czabotar, P. E. & Colman, P. M. BCL-2 family antagonists for cancer therapy. Nature Rev. Drug Discov. 7, 989–1000 (2008).

    CAS  Google Scholar 

  74. Askew, D. S., Ashmun, R. A., Simmons, B. C. & Cleveland, J. L. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 19, 15–22 (1991).

    Google Scholar 

  75. Shi, Y. et al. Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas. Science 257, 212–214 (1992).

    CAS  PubMed  Google Scholar 

  76. Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).

    CAS  PubMed  Google Scholar 

  77. Strasser, A., Harris, A. W, Bath, M. L. & Cory, S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348, 331–333 (1990).

    CAS  PubMed  Google Scholar 

  78. Soucie, E. L. et al. Myc potentiates apoptosis by stimulating Bax activity at the mitochondria. Mol. Cell. Biol. 21, 4725–4736 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. de Alborán, I. M. Baena, E. & Martinez- A. C. c-Myc-deficient B lymphocytes are resistant to spontaneous and induced cell death. Cell Death Differ. 11, 61–68 (2004).

    PubMed  Google Scholar 

  80. Eischen, C. M. et al. Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1. Oncogene 20, 6983–6993 (2001).

    CAS  PubMed  Google Scholar 

  81. Maclean, K. H. et al. c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-XL. Mol. Cell. Biol. 23, 7256–7270 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dansen, T. B. et al. Specific requirement for Bax, not Bak, in Myc-induced apoptosis and tumor suppression in vivo. J. Biol. Chem. 281, 10890–10895 (2006).

    CAS  PubMed  Google Scholar 

  83. Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    CAS  PubMed  Google Scholar 

  84. Pelengaris, S. et al. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell 3, 565–577 (1999).

    CAS  PubMed  Google Scholar 

  85. Yonish-Rouach, E. et al. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352, 345–347 (1991).

    CAS  PubMed  Google Scholar 

  86. Zhan, Q. et al. Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis. Oncogene 9, 3743–3751 (1994).

    CAS  PubMed  Google Scholar 

  87. Lapenko, O. & Prives, C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 13, 951–961 (2006).

    Google Scholar 

  88. Trauth, B. C. et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245, 301–305 (1989).

    CAS  PubMed  Google Scholar 

  89. Yonehara, S., Ishii, A. & Yonehara, M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169, 1747–1756 (1989).

    CAS  PubMed  Google Scholar 

  90. Itoh, N. et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66, 233–243 (1991).

    CAS  PubMed  Google Scholar 

  91. Suda, T., Takahashi, T., Golstein, P. & Nagata, S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75, 1169–1178 (1993).

    CAS  PubMed  Google Scholar 

  92. Ogasawara, J. et al. Lethal effect of the anti-Fas antibody in mice. Nature 364, 806–809 (1993).

    CAS  PubMed  Google Scholar 

  93. Johnstone, R. W., Frew, A. J. & Smyth, M. J. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nature Rev. Cancer 8, 782–798 (2008).

    CAS  Google Scholar 

  94. Pitti, R. M. et al. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem. 271, 12687–12690 (1996).

    CAS  PubMed  Google Scholar 

  95. Wiley, S. R. et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3, 673–682 (1995).

    CAS  PubMed  Google Scholar 

  96. Friesen, C., Herr, I., Krammer, P. H. & Debatin, K. M. Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nature Med. 2, 574–577 (1996).

    CAS  PubMed  Google Scholar 

  97. Fulda, S., Susin, S. A., Kroemer, G. & Debatin, K. M. Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells. Cancer Res. 58, 4453–4460 (1998).

    CAS  PubMed  Google Scholar 

  98. Müller, M. et al. Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J. Clin. Invest. 99, 403–413 (1997). .

    PubMed  PubMed Central  Google Scholar 

  99. Müller, M. et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 188, 2033–2045 (1998).

    PubMed  PubMed Central  Google Scholar 

  100. Bellgrau, D. et al. A role for CD95 ligand in preventing graft rejection. Nature 377, 630–632 (1995).

    CAS  PubMed  Google Scholar 

  101. Griffith, T. S. et al. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192 (1995).

    CAS  PubMed  Google Scholar 

  102. Strand, S. et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells — a mechanism of immune evasion? Nature Med. 2, 1361–1366 (1996).

    CAS  PubMed  Google Scholar 

  103. Hahne, M. et al. Melanoma cell expression of Fas (Apo-1/CD95) ligand: implications for tumor immune escape. Science 274, 1363–1366 (1996).

    CAS  PubMed  Google Scholar 

  104. Allison, J., Georgiou, H. M., Strasser, A. & Vaux, D. L. Transgenic expression of CD95 ligand on islet β cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc. Natl Acad. Sci. USA 94, 3943–3947 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Oltersdorf, T. et al. An inhibitor of the Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    CAS  PubMed  Google Scholar 

  106. Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809–1820 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Being asked to write this Timeline article is a privilege and in no way reflects my contribution to the field compared with the many giants who have made groundbreaking advances over the past several decades. Trying to get the balance right between the fundamental biology of apoptosis and how it has contributed to our understanding of cancer has not been easy in a limited space. I regret not being able to cite all the major contributions to this field, and to those colleagues whose work I should have cited, but inadvertently did not, I humbly apologize.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Cotter.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Thomas G. Cotter's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotter, T. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9, 501–507 (2009). https://doi.org/10.1038/nrc2663

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2663

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing