Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

γH2AX and cancer

Abstract

Histone H2AX phosphorylation on a serine four residues from the carboxyl terminus (producing γH2AX) is a sensitive marker for DNA double-strand breaks (DSBs). DSBs may lead to cancer but, paradoxically, are also used to kill cancer cells. Using γH2AX detection to determine the extent of DSB induction may help to detect precancerous cells, to stage cancers, to monitor the effectiveness of cancer therapies and to develop novel anticancer drugs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: γH2AX staining patterns observed in mammalian cells.
Figure 2: H2AX is a central component of numerous signalling pathways in response to DNA double-strand breaks (DSBs).
Figure 3: H2AX and γH2AX foci.

Similar content being viewed by others

References

  1. McKinnon, P. J. & Caldecott, K. W. DNA strand break repair and human genetic disease. Annu. Rev. Genomics Hum. Genet. 8, 37–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Jeggo, P. A. & Lobrich, M. DNA double-strand breaks: their cellular and clinical impact? Oncogene 26, 7717–7719 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Hakem, R. DNA-damage repair; the good, the bad, and the ugly. EMBO J. 27, 589–605 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. O'Driscoll, M., Gennery, A. R., Seidel, J., Concannon, P. & Jeggo, P. A. An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR–Seckel syndrome. DNA Repair (Amst.) 3, 1227–1235 (2004).

    Article  CAS  Google Scholar 

  5. Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Helleday, T., Petermann, E., Lundin, C., Hodgson, B. & Sharma, R. A. DNA repair pathways as targets for cancer therapy. Nature Rev. Cancer 8, 193–204 (2008).

    Article  CAS  Google Scholar 

  7. Takahashi, A. & Ohnishi, T. Does γH2AX foci formation depend on the presence of DNA double strand breaks? Cancer Lett. 229, 171–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Sedelnikova, O. A., Pilch, D. R., Redon, C. & Bonner, W. M. Histone H2AX in DNA damage and repair. Cancer Biol. Ther. 2, 233–235 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Sedelnikova, O. A. & Bonner, W. M. γH2AX in cancer cells: a potential biomarker for cancer diagnostics, prediction and recurrence. Cell Cycle 5, 2909–2913 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Kinner, A., Wu, W., Staudt, C. & Iliakis, G. γH2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 36, 5678–5694 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, B. & Elledge, S. J. Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc. Natl Acad. Sci. USA 104, 20759–20763 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kolas, N. K. et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318, 1637–1640 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bartova, E., Krejci, J., Harnicarova, A., Galiova, G. & Kozubek, S. Histone modifications and nuclear architecture: a review. J. Histochem. Cytochem. 56, 711–721 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Levine, B. J., Chodchoy, N., Marzluff, W. F. & Skoultchi, A. I. Coupling of replication type histone mRNA levels to DNA synthesis requires the stem-loop sequence at the 3′ end of the mRNA. Proc. Natl Acad. Sci. USA 84, 6189–6193 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu, R. S. & Bonner, W. M. Separation of basal histone synthesis from S-phase histone synthesis in dividing cells. Cell 27, 321–330 (1981).

    Article  CAS  PubMed  Google Scholar 

  17. Mannironi, C., Bonner, W. M. & Hatch, C. L. H2A.X. a histone isoprotein with a conserved C-terminal sequence, is encoded by a novel mRNA with both DNA replication type and polyA 3' processing signals. Nucleic Acids Res. 17, 9113–9126 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mailand, N. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131, 887–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol. 172, 823–834 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paull, T. T. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Shroff, R. et al. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr. Biol. 14, 1703–1711 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Redon, C. et al. Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage. EMBO Rep. 4, 678–684 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mirzayans, R., Severin, D. & Murray, D. Relationship between DNA double-strand break rejoining and cell survival after exposure to ionizing radiation in human fibroblast strains with differing ATM/p53 status: implications for evaluation of clinical radiosensitivity. Int. J. Radiat. Oncol. Biol. Phys. 66, 1498–1505 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Chowdhury, D. et al. γH2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol. Cell 20, 801–809 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Keogh, M. C. et al. A phosphatase complex that dephosphorylates γH2AX regulates DNA damage checkpoint recovery. Nature 439, 497–501 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Chowdhury, D. et al. A PP4-phosphatase complex dephosphorylates γH2AX generated during DNA replication. Mol. Cell 31, 33–46 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakada, S., Chen, G. I., Gingras, A. C. & Durocher, D. PP4 is a γH2AX phosphatase required for recovery from the DNA damage checkpoint. EMBO Rep. 9, 1019–1026 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Downs, J. A. et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell 16, 979–990 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Morrison, A. J. et al. INO80 and γH2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119, 767–775 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Kusch, T. et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306, 2084–2087 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. van Attikum, H., Fritsch, O., Hohn, B. & Gasser, S. M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119, 777–788 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. van Attikum, H. & Gasser, S. M. ATP-dependent chromatin remodeling and DNA double-strand break repair. Cell Cycle 4, 1011–1014 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Stiff, T. et al. ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J. 25, 5775–5782 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marti, T. M., Hefner, E., Feeney, L., Natale, V. & Cleaver, J. E. H2AX phosphorylation within the G1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks. Proc. Natl Acad. Sci. USA 103, 9891–9896 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hanasoge, S. & Ljungman, M. H2AX phosphorylation after UV-irradiation is triggered by DNA repair intermediates and is mediated by the ATR kinase. Carcinogenesis 28, 2298–2304 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Bassing, C. H. et al. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc. Natl Acad. Sci. USA 99, 8173–8178 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bassing, C. H. et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114, 359–370 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Thirman, M. J. et al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N. Engl. J. Med. 329, 909–914 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Parikh, R. A. et al. Loss of distal 11q is associated with DNA repair deficiency and reduced sensitivity to ionizing radiation in head and neck squamous cell carcinoma. Genes Chromosomes Cancer 46, 761–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Srivastava, N., Gochhait, S., Gupta, P. & Bamezai, R. N. Copy number alterations of the H2AFX gene in sporadic breast cancer patients. Cancer Genet. Cytogenet. 180, 121–128 (2008 ).

    Article  CAS  PubMed  Google Scholar 

  41. Novik, K. L. et al. Genetic variation in H2AFX contributes to risk of non-Hodgkin lymphoma. Cancer Epidemiol. Biomarkers Prev. 16, 1098–1106 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, Y. et al. Histone H2AX is a mediator of gastrointestinal stromal tumor cell apoptosis following treatment with imatinib mesylate. Cancer Res. 67, 2685–2692 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Celeste, A. et al. Genomic instability in mice lacking histone H2AX. Science 296, 922–927 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Celeste, A. et al. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114, 371–383 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goodarzi, A. A. et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell 31, 167–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Ghiassi-nejad, M., Mortazavi, S. M., Cameron, J. R., Niroomand-rad, A. & Karam, P. A. Very high background radiation areas of Ramsar, Iran: preliminary biological studies. Health Phys. 82, 87–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Desai, N., Durante, M., Lin, Z. W., Cucinotta, F. & Wu, H. High LET-induced H2AX phosphorylation around the Bragg curve. Adv. Space Res. 35, 236–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Brenner, D. J. & Ward, J. F. Constraints on energy deposition and target size of multiply damaged sites associated with DNA double-strand breaks. Int. J. Radiat. Biol. 61, 737–748 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Hagen, U. Mechanisms of induction and repair of DNA double-strand breaks by ionizing radiation: some contradictions. Radiat. Environ. Biophys. 33, 45–61 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Bonner, W. M. Phenomena leading to cell survival values which deviate from linear-quadratic models. Mutat. Res. 568, 33–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Kielbassa, C., Roza, L. & Epe, B. Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18, 811–816 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Klaunig, J. E. & Kamendulis, L. M. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 44, 239–267 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Tanaka, T., Halicka, H. D., Huang, X., Traganos, F. & Darzynkiewicz, Z. Constitutive histone H2AX phosphorylation and ATM activation, the reporters of DNA damage by endogenous oxidants. Cell Cycle 5, 1940–1945 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Hussain, S. P., Hofseth, L. J. & Harris, C. C. Radical causes of cancer. Nature Rev. Cancer 3, 276–285 (2003).

    Article  CAS  Google Scholar 

  55. Federico, A., Morgillo, F., Tuccillo, C., Ciardiello, F. & Loguercio, C. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer 121, 2381–2386 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Burhans, W. C. & Weinberger, M. DNA replication stress, genome instability and aging. Nucleic Acids Res. 35, 7545–7556 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sobol, R. W. et al. Base excision repair intermediates induce p53-independent cytotoxic and genotoxic responses. J. Biol. Chem. 278, 39951–39959 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nature Rev. Cancer 6, 789–802 (2006).

    Article  CAS  Google Scholar 

  59. Yamashita, Y. et al. Induction of mammalian DNA topoisomerase I mediated DNA cleavage by antitumor indolocarbazole derivatives. Biochemistry 31, 12069–12075 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Pourquier, P. & Pommier, Y. Topoisomerase I-mediated DNA damage. Adv. Cancer Res. 80, 189–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. McClendon, A. K. & Osheroff, N. DNA topoisomerase II, genotoxicity, and cancer. Mutat. Res. 623, 83–97 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fortune, J. M. & Osheroff, N. Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. Prog. Nucleic Acid Res. Mol. Biol. 64, 221–253 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Guirouilh-Barbat, J., Redon, C. & Pommier, Y. Transcription-coupled DNA double-strand breaks are mediated via the nucleotide excision repair and the Mre11–Rad50–Nbs1 complex. Mol. Biol. Cell 19, 3969–3981 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wilson, D. M. 3rd & Bohr, V. A. The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair (Amst.) 6, 544–559 (2007).

    Article  CAS  Google Scholar 

  65. Nowosielska, A. & Marinus, M. G. DNA mismatch repair-induced double-strand breaks. DNA Repair (Amst.) 7, 48–56 (2008).

    Article  CAS  Google Scholar 

  66. McCulloch, S. D. & Kunkel, T. A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res. 18, 148–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Kraemer, K. H. et al. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype–phenotype relationship. Neuroscience 145, 1388–1396 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Andressoo, J. O., Hoeijmakers, J. H. & Mitchell, J. R. Nucleotide excision repair disorders and the balance between cancer and aging. Cell Cycle 5, 2886–2888 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Cheadle, J. P. & Sampson, J. R. Exposing the MYtH about base excision repair and human inherited disease. Hum. Mol. Genet. 12, R159–R165 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Rustgi, A. K. The genetics of hereditary colon cancer. Genes Dev. 21, 2525–2538 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Campisi, J. & d'Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nature Rev. Mol. Cell Biol. 8, 729–740 (2007).

    Article  CAS  Google Scholar 

  72. d'Adda di Fagagna, F. Living on a break: cellular senescence as a DNA-damage response. Nature Rev. Cancer 8, 512–522 (2008).

    Article  CAS  Google Scholar 

  73. Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres. Curr. Biol. 13, 1549–1556 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Nakamura, A. J. et al. Both telomeric and non-telomeric DNA damage are determinants of mammalian cellular senescence. Epigenet. Chromatin (in the press).

  75. Deng, Y., Chan, S. S. & Chang, S. Telomere dysfunction and tumour suppression: the senescence connection. Nature Rev. Cancer 8, 450–458 (2008).

    Article  CAS  Google Scholar 

  76. Edry, E. & Melamed, D. Class switch recombination: a friend and a foe. Clin. Immunol. 123, 244–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Soulas-Sprauel, P. et al. V(D)J and immunoglobulin class switch recombinations: a paradigm to study the regulation of DNA end-joining. Oncogene 26, 7780–7791 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Mahadevaiah, S. K. et al. Recombinational DNA double-strand breaks in mice precede synapsis. Nature Genet. 27, 271–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Fernandez-Capetillo, O. et al. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev. Cell 4, 497–508 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Rogakou, E. P., Nieves-Neira, W., Boon, C., Pommier, Y. & Bonner, W. M. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J. Biol. Chem. 275, 9390–9395 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Samejima, K. & Earnshaw, W. C. Trashing the genome: the role of nucleases during apoptosis. Nature Rev. Mol. Cell Biol. 6, 677–688 (2005).

    Article  CAS  Google Scholar 

  82. Tarakanova, V. L. et al. Gammaherpesvirus kinase actively initiates a DNA damage response by inducing phosphorylation of H2AX to foster viral replication. Cell Host Microbe 1, 275–286 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Sedelnikova, O. A., Rogakou, E. P., Panyutin, I. G. & Bonner, W. M. Quantitative detection of 125IdU-induced DNA double-strand breaks with γ-H2AX antibody. Radiat. Res. 158, 486–492 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Rothkamm, K. & Lobrich, M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc. Natl Acad. Sci. USA 100, 5057–5062 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sedelnikova, O. A. et al. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nature Cell Biol. 6, 168–170 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Lobrich, M. et al. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc. Natl Acad. Sci. USA 102, 8984–8989 (2005).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Qvarnstrom, O. F., Simonsson, M., Johansson, K. A., Nyman, J. & Turesson, I. DNA double strand break quantification in skin biopsies. Radiother. Oncol. 72, 311–317 (2004).

    Article  PubMed  CAS  Google Scholar 

  90. Huang, X., Halicka, H. D. & Darzynkiewicz, Z. Detection of histone H2AX phosphorylation on Ser-139 as an indicator of DNA damage (DNA double-strand breaks). Curr. Protoc. Cytom. Chapter 7 Unit 7.27 (2004).

  91. Tanaka, T. et al. Cytometry of ATM activation and histone H2AX phosphorylation to estimate extent of DNA damage induced by exogenous agents. Cytometry A 71, 641–648 (2007).

    Google Scholar 

  92. Olive, P. L. & Banath, J. P. Phosphorylation of histone H2AX as a measure of radiosensitivity. Int. J. Radiat. Oncol. Biol. Phys. 58, 331–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Rothkamm, K., Balroop, S., Shekhdar, J., Fernie, P. & Goh, V. Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure. Radiology 242, 244–251 (2007).

    Article  PubMed  Google Scholar 

  94. Sedelnikova, O. A. et al. DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Res. 67, 4295–4302 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Sedelnikova, O. A. et al. Delayed kinetics of DNA double-strand break processing in normal and pathological aging. Aging Cell 7, 89–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Takagi, K. et al. Novel E-ring camptothecin keto analogues (S38809 and S39625) are stable, potent, and selective topoisomerase I inhibitors without being substrates of drug efflux transporters. Mol. Cancer Ther. 6, 3229–3238 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Albert, J. M. et al. Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin. Cancer Res. 13, 3033–3042 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Rao, V. A., Agama, K., Holbeck, S. & Pommier, Y. Batracylin (NSC 320846), a dual inhibitor of DNA topoisomerases I and II induces histone γ-H2AX as a biomarker of DNA damage. Cancer Res. 67, 9971–9979 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Shimura, T. et al. Bloom's syndrome helicase and Mus81 are required to induce transient double-strand DNA breaks in response to DNA replication stress. J. Mol. Biol. 375, 1152–1164 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. MacPhail, S. H., Banath, J. P., Yu, Y., Chu, E. & Olive, P. L. Cell cycle-dependent expression of phosphorylated histone H2AX: reduced expression in unirradiated but not X-irradiated G1-phase cells. Radiat. Res. 159, 759–767 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Ismail, I. H., Wadhra, T. I. & Hammarsten, O. An optimized method for detecting γ-H2AX in blood cells reveals a significant interindividual variation in the γ-H2AX response among humans. Nucleic Acids Res. 35, e36 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Olive, P. L., Banath, J. P. & Keyes, M. Residual γH2AX after irradiation of human lymphocytes and monocytes in vitro and its relation to late effects after prostate brachytherapy. Radiother Oncol. 86, 336–346 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Ha, L., Ceryak, S. & Patierno, S. R. Generation of S. phase-dependent DNA double-strand breaks by Cr(VI) exposure: involvement of ATM in Cr(VI) induction of γ-H2AX. Carcinogenesis 25, 2265–2274 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Furuta, T. et al. Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes. J. Biol. Chem. 278, 20303–20312 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Celeste, A. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biol. 5, 675–679 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Koturbash, I. et al. Epigenetic dysregulation underlies radiation-induced transgenerational genome instability in vivo. Int. J. Radiat. Oncol. Biol. Phys. 66, 327–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Xie, A. et al. Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair. Mol. Cell 28, 1045–1057 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Joubert, A. et al. DNA double-strand break repair defects in syndromes associated with acute radiation response: at least two different assays to predict intrinsic radiosensitivity? Int. J. Radiat. Biol. 84, 107–125 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Iwabuchi, K. et al. Potential role for 53BP1 in DNA end-joining repair through direct interaction with DNA. J. Biol. Chem. 278, 36487–36495 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Jeyapalan, J. C., Ferreira, M., Sedivy, J. M. & Herbig, U. Accumulation of senescent cells in mitotic tissue of aging primates. Mech. Ageing Dev. 128, 36–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Porcedda, P. et al. Impaired elimination of DNA double-strand break-containing lymphocytes in ataxia telangiectasia and Nijmegen breakage syndrome. DNA Repair (Amst.) 5, 904–913 (2006).

    Article  CAS  Google Scholar 

  112. Tanaka, T., Kajstura, M., Halicka, H. D., Traganos, F. & Darzynkiewicz, Z. Constitutive histone H2AX phosphorylation and ATM activation are strongly amplified during mitogenic stimulation of lymphocytes. Cell Prolif. 40, 1–13 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Fagerholm, R. et al. NAD(P)H:quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nature Genet. 40, 844–853 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Yu, T., MacPhail, S. H., Banath, J. P., Klokov, D. & Olive, P. L. Endogenous expression of phosphorylated histone H2AX in tumors in relation to DNA double-strand breaks and genomic instability. DNA Repair (Amst.) 5, 935–946 (2006).

    Article  CAS  Google Scholar 

  116. Wasco, M. J. & Pu, R. T. Utility of antiphosphorylated H2AX antibody (γ-H2AX) in diagnosing metastatic renal cell carcinoma. Appl. Immunohistochem. Mol. Morphol. 16, 349–356 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Lakatos, P. L. & Lakatos, L. Risk for colorectal cancer in ulcerative colitis: Changes, causes and management strategies. World J. Gastroenterol. 14, 3937–3947 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Risques, R. A. et al. Ulcerative colitis is a disease of accelerated colon aging: evidence from telomere attrition and DNA damage. Gastroenterology 135, 410–418 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Porcedda, P. et al. A rapid flow cytometry test based on histone H2AX phosphorylation for the sensitive and specific diagnosis of ataxia telangiectasia. Cytometry A 73, 508–516 (2008).

    Article  PubMed  Google Scholar 

  120. Riballo, E. et al. A pathway of double-strand break rejoining dependent upon, A. T. M., Artemis, and proteins locating to γ-H2AX foci. Mol. Cell 16, 715–724 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Geisel, D., Heverhagen, J. T., Kalinowski, M. & Wagner, H. J. DNA double-strand breaks after percutaneous transluminal angioplasty. Radiology 248, 852–859 (2008).

    Article  PubMed  Google Scholar 

  122. Sak, A. et al. γ-H2AX foci formation in peripheral blood lymphocytes of tumor patients after local radiotherapy to different sites of the body: dependence on the dose-distribution, irradiated site and time from start of treatment. Int. J. Radiat. Biol. 83, 639–652 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Childs, S. & Ling, V. The MDR superfamily of genes and its biological implications. Important Adv. Oncol. 21–36 (1994).

  124. Kummar, S. et al. Compressing drug development timelines in oncology using phase '0' trials. Nature Rev. Cancer 7, 131–139 (2007).

    Article  CAS  Google Scholar 

  125. Karp, J. E. et al. A phase 1 clinical-laboratory study of clofarabine followed by cyclophosphamide for adults with refractory acute leukemias. Blood 110, 1762–1769 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yauk, C. et al. Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location. Proc. Natl Acad. Sci. USA 105, 605–610 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rekhadevi, P. V. et al. Genotoxicity assessment in oncology nurses handling anti-neoplastic drugs. Mutagenesis 22, 395–401 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Markova, E., Hillert, L., Malmgren, L., Persson, B. R. & Belyaev, I. Y. Microwaves from GSM mobile telephones affect 53BP1 and γ-H2AX foci in human lymphocytes from hypersensitive and healthy persons. Environ. Health Perspect. 113, 1172–1177 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Briviba, K. et al. Effect of consumption of organically and conventionally produced apples on antioxidant activity and DNA damage in humans. J. Agric. Food Chem. 55, 7716–7721 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Markova, E., Schultz, N. & Belyaev, I. Y. Kinetics and dose–response of residual 53BP1/ γ-H2AX foci: co-localization, relationship with DSB repair and clonogenic survival. Int. J. Radiat. Biol. 83, 319–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. McManus, K. J. & Hendzel, M. J. ATM-dependent DNA damage-independent mitotic phosphorylation of H2AX in normally growing mammalian cells. Mol. Biol. Cell 16, 5013–5025 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ward, I. M. & Chen, J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J. Biol. Chem. 276, 47759–47762 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Ichijima, Y. et al. Phosphorylation of histone H2AX at M phase in human cells without DNA damage response. Biochem. Biophys. Res. Commun. 336, 807–812 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Jeffers, L. J., Coull, B. J., Stack, S. J. & Morrison, C. G. Distinct BRCT domains in Mcph1/Brit1 mediate ionizing radiation-induced focus formation and centrosomal localization. Oncogene 27, 139–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Chicheportiche, A., Bernardino-Sgherri, J., de Massy, B. & Dutrillaux, B. Characterization of Spo11-dependent and independent phospho-H2AX foci during meiotic prophase I in the male mouse. J. Cell Sci. 120, 1733–1742 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Daniel, R. et al. Histone H2AX is phosphorylated at sites of retroviral DNA integration but is dispensable for postintegration repair. J. Biol. Chem. 279, 45810–45814 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Stiff, T. et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 64, 2390–2396 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Stucki, M. & Jackson, S. P. γH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair (Amst.) 5, 534–543 (2006).

    Article  CAS  Google Scholar 

  139. Kobayashi, J. et al. NBS1 localizes to γ-H2AX foci through interaction with the FHA/BRCT domain. Curr. Biol. 12, 1846–1851 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. di Masi, A. et al. The R215W mutation in NBS1 impairs γ-H2AX binding and affects DNA repair: molecular bases for the severe phenotype of 657del5/R215W Nijmegen breakage syndrome patients. Biochem. Biophys. Res. Commun. 369, 835–840 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Lou, Z. et al. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol. Cell 21, 187–200 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Wood, J. L., Singh, N., Mer, G. & Chen, J. MCPH1 functions in an H2AX-dependent but MDC1-independent pathway in response to DNA damage. J. Biol. Chem. 282, 35416–35423 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Alderton, G. K. et al. Regulation of mitotic entry by microcephalin and its overlap with ATR signalling. Nature Cell Biol. 8, 725–733 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Chaplet, M., Rai, R., Jackson-Bernitsas, D., Li, K. & Lin, S. Y. BRIT1/MCPH1: a guardian of genome and an enemy of tumors. Cell Cycle 5, 2579–2583 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Fernandez-Capetillo, O., Lee, A., Nussenzweig, M. & Nussenzweig, A. H2AX: the histone guardian of the genome. DNA Repair (Amst.) 3, 959–967 (2004).

    Article  CAS  Google Scholar 

  146. Ikura, T. et al. DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol. Cell Biol. 27, 7028–7040 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. van Attikum, H., Fritsch, O. & Gasser, S. M. Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J. 26, 4113–4125 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Xie, A. et al. Control of sister chromatid recombination by histone H2AX. Mol. Cell 16, 1017–1025 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Unal, E. et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16, 991–1002 (2004).

    Article  PubMed  Google Scholar 

  150. Lu, C. et al. Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Mol. Cell 23, 121–132 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lu, C. et al. Serum starvation induces H2AX phosphorylation to regulate apoptosis via p38 MAPK pathway. FEBS Lett. 582, 2703–2708 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Marchetti, F., Coleman, M. A., Jones, I. M. & Wyrobek, A. J. Candidate protein biodosimeters of human exposure to ionizing radiation. Int. J. Radiat. Biol. 82, 605–639 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Banath, J. P. & Olive, P. L. Expression of phosphorylated histone H2AX as a surrogate of cell killing by drugs that create DNA double-strand breaks. Cancer Res. 63, 4347–4350 (2003).

    CAS  PubMed  Google Scholar 

  154. Tomilin, N. V. et al. Visualization of focal nuclear sites of DNA repair synthesis induced by bleomycin in human cells. Radiat. Res. 156, 347–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Antony, S. et al. Novel indenoisoquinolines NSC 725776 and NSC 724998 produce persistent topoisomerase I cleavage complexes and overcome multidrug resistance. Cancer Res. 67, 10397–10405 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Olive, P. L., Banath, J. P. & Sinnott, L. T. Phosphorylated histone H2AX in spheroids, tumors, and tissues of mice exposed to etoposide and 3-amino-1,2,4-benzotriazine-1,3-dioxide. Cancer Res. 64, 5363–5369 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Kurz, E. U. & Lees-Miller, S. P. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair (Amst.) 3, 889–900 (2004).

    Article  CAS  Google Scholar 

  158. Krynetskaia, N., Xie, H., Vucetic, S., Obradovic, Z. & Krynetskiy, E. High mobility group protein B1 is an activator of apoptotic response to antimetabolite drugs. Mol. Pharmacol. 73, 260–269 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Ewald, B., Sampath, D. & Plunkett, W. H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation. Mol. Cancer Ther. 6, 1239–1248 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Kurose, A. et al. Effects of hydroxyurea and aphidicolin on phosphorylation of ataxia telangiectasia mutated on Ser 1981 and histone H2AX on Ser 139 in relation to cell cycle phase and induction of apoptosis. Cytometry A 69, 212–221 (2006).

    Article  PubMed  Google Scholar 

  161. Pabla, N., Huang, S., Mi, Q. S., Daniel, R. & Dong, Z. ATR–Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis. J. Biol. Chem. 283, 6572–6583 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Mirzoeva, O. K., Kawaguchi, T. & Pieper, R. O. The Mre11/Rad50/Nbs1 complex interacts with the mismatch repair system and contributes to temozolomide-induced G2 arrest and cytotoxicity. Mol. Cancer Ther. 5, 2757–2766 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Meng, L., Kohlhagen, G., Sausville, E. A. & Pommier, Y. DNA-protein crosslinks and replication-dependent histone H2AX phosphorylation induced by aminoflavone (NSC 686288), a novel anticancer agent active against breast cancer cells. Cancer Res. 65, 5337–5343 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Kiziltepe, T. et al. 5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. Mol. Cancer Ther. 6, 1718–1727 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Munshi, A. et al. Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolongation of γ-H2AX foci. Mol. Cancer Ther. 5, 1967–1974 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Zhao, Y. et al. Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. Cancer Res. 66, 5354–5362 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Solier, S., Sordet, O., Kohn, K. W. & Pommier, Y. Death receptor-induced activation of the Chk2- and histone H2AX-associated DNA damage response pathways. Mol. Cell Biol. (in the press).

Download references

Acknowledgements

We thank K.W. Kohn for continuous insights during the course of our H2AX studies. We thank B.J. Baird, National Cancer Institute, for critical reading of the manuscript and J. Doroshow for his commitment to the development of γH2AX as a clinical biomarker. The authors are funded by the Intramural Research Program of the National Cancer Institute, Centre for Cancer Research, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Bonner.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary 

5-azacytidine

batracylin

bleomycin

calicheamicin

camptothecin

cisplatin

clofarabine

cyclophosphamide

cytarabine

doxorubicin

etoposide

gemcitabine

hydroxyurea

imatinib mesylate

melphalan

mitoxantrone

SAHA

temozolomide

tirapazamine

trabectedin

UCN-01

OMIM

ataxia-telangiectasia

FURTHER INFORMATION

W. M. Bonner's homepages

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonner, W., Redon, C., Dickey, J. et al. γH2AX and cancer. Nat Rev Cancer 8, 957–967 (2008). https://doi.org/10.1038/nrc2523

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2523

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing