Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition

Abstract

In the developing mammalian nervous system, neural progenitor cells first express the Notch effector Hes1 at variable levels and then proneural genes and Notch ligands in salt-and-pepper patterns. Recent real-time imaging analysis indicates that Hes1 expression in these cells oscillates with a period of about 2–3 h. Furthermore, the proneural gene Neurogenin-2 (Ngn2) and the Notch ligand gene Deltalike-1 (Dll1) are expressed cyclically in neural progenitor cells under the control of Hes1 oscillation but are expressed continuously in postmitotic neurons, which lose Hes1 expression. Hes1-driven Ngn2 and Dll1 oscillations seem to be advantageous for maintenance of a group of cells in an undifferentiated state by mutual activation of Notch signaling. This dynamic mode of gene expression would require a revision of the traditional view of how Notch-mediated lateral inhibition operates in the developing mammalian nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Notch signaling pathway.
Figure 2: Two models for lateral inhibition-mediated formation of salt-and-pepper patterns.
Figure 3: Salt-and-pepper patterns of Dll1 expression in the developing mouse brain.
Figure 4: Oscillator networks in neural progenitors.

Similar content being viewed by others

References

  1. Artavanis-Tsakonas, S., Rand, M.D. & Lake, R.J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  Google Scholar 

  2. Gaiano, N. & Fishell, G. The role of Notch in promoting glial and neural stem cell fates. Annu. Rev. Neurosci. 25, 471–490 (2002).

    Article  CAS  Google Scholar 

  3. Selkoe, D. & Kopan, R. Notch and presenilin: regulated intramembrane proteolysis links development and degeneration. Annu. Rev. Neurosci. 26, 565–597 (2003).

    Article  CAS  Google Scholar 

  4. Castro, D.S. et al. Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif. Dev. Cell 11, 831–844 (2006).

    Article  CAS  Google Scholar 

  5. Shimojo, H., Ohtsuka, T. & Kageyama, R. Oscillations in Notch signaling regulate maintenance of neural progenitors. Neuron 58, 52–64 (2008).

    Article  CAS  Google Scholar 

  6. Henrique, D. et al. Expression of a Delta homologue in prospective neurons in the chick. Nature 375, 787–790 (1995).

    Article  CAS  Google Scholar 

  7. Myat, A., Henrique, D., Ish-Horowicz, D. & Lewis, J. A chick homologue of Serrate and its relationship with Notch and Delta homologues during central neurogenesis. Dev. Biol. 174, 233–247 (1996).

    Article  CAS  Google Scholar 

  8. Dunwoodie, S.L., Henrique, D., Harrison, S.M. & Beddington, R.S.P. Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 124, 3065–3076 (1997).

    CAS  PubMed  Google Scholar 

  9. Bettenhausen, B., Hrabe de Angelis, M., Simon, D., Guenet, J.L. & Gossler, A. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121, 2407–2418 (1995).

    CAS  PubMed  Google Scholar 

  10. Nieto, M., Schuurmans, C., Britz, O. & Guillemot, F. Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29, 401–413 (2001).

    Article  CAS  Google Scholar 

  11. Hatakeyama, J. & Kageyama, R. Notch1 expression is spatiotemporally correlated with neurogenesis and negatively regulated by Notch1-independent Hes genes in the developing nervous system. Cereb. Cortex 16 (suppl. 1), i132–i137 (2006).

    Article  Google Scholar 

  12. Hatakeyama, J. et al. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131, 5539–5550 (2004).

    Article  CAS  Google Scholar 

  13. Hämmerle, B. & Tejedor, F.J. A novel function of DELTA-NOTCH signalling mediates the transition from proliferation to neurogenesis in neural progenitor cells. PLoS ONE 2, e1169 (2007).

    Article  Google Scholar 

  14. Nelson, B.R. & Reh, T.A. Relationship between Delta-like and proneural bHLH genes during chick retinal development. Dev. Dyn. 237, 1565–1580 (2008).

    Article  CAS  Google Scholar 

  15. Guillemot, F. & Joyner, A.L. Dynamic expression of the murine Achaete-Scute homologue Mash-1 in the developing nervous system. Mech. Dev. 42, 171–185 (1993).

    Article  CAS  Google Scholar 

  16. Sommer, L., Ma, Q. & Anderson, D.J. neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol. Cell. Neurosci. 8, 221–241 (1996).

    Article  CAS  Google Scholar 

  17. Lindsell, C.E., Boulter, J., diSibio, G., Gossler, A. & Weinmaster, G. Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand–receptor pairs that may function in neural development. Mol. Cell. Neurosci. 8, 14–27 (1996).

    Article  CAS  Google Scholar 

  18. Hirata, H. et al. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298, 840–843 (2002).

    Article  CAS  Google Scholar 

  19. Masamizu, Y. et al. Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc. Natl. Acad. Sci. USA 103, 1313–1318 (2006).

    Article  CAS  Google Scholar 

  20. Cayouette, M. & Raff, M. Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals. Nat. Neurosci. 5, 1265–1269 (2002).

    Article  CAS  Google Scholar 

  21. Johnson, J.E. Numb and Numblike control cell number during vertebrate neurogenesis. Trends Neurosci. 26, 395–396 (2003).

    Article  CAS  Google Scholar 

  22. Shen, Q., Zhong, W., Jan, Y.N. & Temple, S. Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development 129, 4843–4853 (2002).

    CAS  PubMed  Google Scholar 

  23. Ohtsuka, T. et al. Visualization of embryonic neural stem cells using Hes promoters in transgenic mice. Mol. Cell. Neurosci. 31, 109–122 (2006).

    Article  CAS  Google Scholar 

  24. Rašin, M.-R. et al. Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat. Neurosci. 10, 819–827 (2007).

    Article  Google Scholar 

  25. Heng, J.I.-T. et al. Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature 455, 114–118 (2008).

    Article  CAS  Google Scholar 

  26. Politis, P.K. et al. BM88/CEND1 coordinates cell cycle exit and differentiation of neuronal precursors. Proc. Natl. Acad. Sci. USA 104, 17861–17866 (2007).

    Article  CAS  Google Scholar 

  27. Castella, P., Sawai, S., Nakao, K., Wagner, J.A. & Caudy, M. HES-1 repression of differentiation and proliferation in PC12 cells: role for the helix 3-helix 4 domain in transcription repression. Mol. Cell. Biol. 20, 6170–6183 (2000).

    Article  CAS  Google Scholar 

  28. Ström, A., Arai, N., Leers, J. & Gustafsson, J.-A. The Hairy and Enhancer of Split homologue-1 (HES-1) mediates the proliferative effect of 17β-estradiol on breast cancer cell lines. Oncogene 19, 5951–5953 (2000).

    Article  Google Scholar 

  29. Hartman, J., Müller, P., Foster, J.S., Wimalasena, J. & Gustafsson, J.-A. HES-1 inhibits 17β-estradiol and heregulin-β1-mediated upregulation of E2F–1. Oncogene 23, 8826–8833 (2004).

    Article  CAS  Google Scholar 

  30. Baek, J.H., Hatakeyama, J., Sakamoto, S., Ohtsuka, T. & Kageyama, R. Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 133, 2467–2476 (2006).

    Article  CAS  Google Scholar 

  31. Sang, L., Coller, H.A. & Roberts, J.M. Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 321, 1095–1100 (2008).

    Article  CAS  Google Scholar 

  32. Kabos, P., Kabosova, A. & Neuman, A. Blocking HES1 expression initiates GABAergic differentiation and induces the expression of p21(CIP1/WAF1) in human neural stem cells. J. Biol. Chem. 277, 8763–8766 (2002).

    Article  CAS  Google Scholar 

  33. Murata, K. et al. Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol. Cell. Biol. 25, 4262–4271 (2005).

    Article  CAS  Google Scholar 

  34. Irvine, K.D. & Rauskolb, C. Boundaries in development: formation and function. Annu. Rev. Cell Dev. Biol. 17, 189–214 (2001).

    Article  CAS  Google Scholar 

  35. Simeone, A. Towards the comprehension of genetic mechanisms controlling brain morphogenesis. Trends Neurosci. 25, 119–121 (2002).

    Article  CAS  Google Scholar 

  36. Kiecker, C. & Lumsden, A. Compartments and their boundaries in vertebrate brain development. Nat. Rev. Neurosci. 6, 553–564 (2005).

    Article  CAS  Google Scholar 

  37. Yoshiura, S. et al. Ultradian oscillations of Stat, Smad, and Hes1 expression in response to serum. Proc. Natl. Acad. Sci. USA 104, 11292–11297 (2007).

    Article  CAS  Google Scholar 

  38. Kamakura, S. et al. Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling. Nat. Cell Biol. 6, 547–554 (2004).

    Article  CAS  Google Scholar 

  39. Bai, G. et al. Id sustains Hes1 expression to inhibit precocious neurogenesis by releasing negative autoregulation of Hes1. Dev. Cell 13, 283–297 (2007).

    Article  CAS  Google Scholar 

  40. Alvarez-Buylla, A., Garcia-Verdugo, J.M. & Tramontin, A.D. A unified hypothesis on the lineage of neural stem cells. Nat. Rev. Neurosci. 2, 287–293 (2001).

    Article  CAS  Google Scholar 

  41. Doetsch, F. The glial identity of neural stem cells. Nat. Neurosci. 6, 1127–1134 (2003).

    Article  CAS  Google Scholar 

  42. Gage, F.H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  Google Scholar 

  43. McKay, R. Stem cell in the central nervous system. Science 276, 66–71 (1997).

    Article  CAS  Google Scholar 

  44. Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

    Article  CAS  Google Scholar 

  45. Imayoshi, I. et al. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat. Neurosci. 11, 1153–1161 (2008); advance online publication 31 August 2008.

    Article  CAS  Google Scholar 

  46. Breunig, J.J., Silbereis, J., Vaccarino, F.M., Sestan, N. & Rakic, P. Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc. Natl. Acad. Sci. USA 104, 20558–20563 (2007).

    Article  CAS  Google Scholar 

  47. Oya, S. et al. Region-specific proliferative response of neural progenitors to exogenous stimulation by growth factors following ischemia. Neuroreport 19, 805–809 (2008).

    Article  CAS  Google Scholar 

  48. Parras, C.M. et al. Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J. 23, 4495–4505 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the Uehara Memorial Foundation. H.S. and I.I. were supported by the 21st Century Center of Excellence Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan and Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoichiro Kageyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kageyama, R., Ohtsuka, T., Shimojo, H. et al. Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat Neurosci 11, 1247–1251 (2008). https://doi.org/10.1038/nn.2208

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing