Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Near-infrared fluorescent proteins for multicolor in vivo imaging

Abstract

Near-infrared fluorescent proteins (FPs) are in high demand for in vivo imaging. We developed four spectrally distinct near-infrared FPs—iRFP670, iRFP682, iRFP702 and iRFP720—from bacterial phytochromes. iRFPs exhibit high brightness in mammalian cells and tissues and are suitable for long-term studies. iRFP670 and iRFP720 enable two-color imaging with standard approaches in living cells and mice. The four new iRFPs and the previously engineered iRFP713 allow multicolor imaging with spectral unmixing in living mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of NIR FPs.
Figure 2: Multicolor imaging in vivo and in cells.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Weissleder, R. Nat. Biotechnol. 19, 316–317 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Strack, R.L. et al. Biochemistry 48, 8279–8281 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Lin, M.Z. et al. Chem. Biol. 16, 1169–1179 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morozova, K.S. et al. Biophys. J. 99, L13–L15 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shcherbo, D. et al. Nat. Methods 7, 827–829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Subach, O.M. et al. Nat. Methods 8, 771–777 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Piatkevich, K.D., Subach, F.V. & Verkhusha, V.V. Chem. Soc. Rev. 42, 3441–3452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giraud, E. & Vermeglio, A. Photosynth. Res. 97, 141–153 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Auldridge, M.E. & Forest, K.T. Crit. Rev. Biochem. Mol. Biol. 46, 67–88 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Giraud, E. et al. J. Biol. Chem. 280, 32389–32397 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Shu, X. et al. Science 324, 804–807 (2009).

    PubMed  PubMed Central  Google Scholar 

  12. Auldridge, M.E., Satyshur, K.A., Anstrom, D.M. & Forest, K.T. J. Biol. Chem. 287, 7000–7009 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Filonov, G.S. et al. Nat. Biotechnol. 29, 757–761 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Filonov, G.S. et al. Angew. Chem. Int. Edn. Engl. 51, 1448–1451 (2012).

    Article  CAS  Google Scholar 

  15. Wagner, J.R., Brunzelle, J.S., Forest, K.T. & Vierstra, R.D. Nature 438, 325–331 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Toh, K.C., Stojkovic, E.A., van Stokkum, I.H., Moffat, K. & Kennis, J.T. Phys. Chem. Chem. Phys. 13, 11985–11997 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Strack, R.L. et al. Nat. Methods 5, 955–957 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Gene 77, 51–59 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Wegerer, A., Sun, T. & Altenbuchner, J. BMC Biotechnol. 8, 2 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Giraud, E. et al. Photochem. Photobiol. Sci. 3, 587–591 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Kremers, G.J., Goedhart, J., van den Heuvel, D.J., Gerritsen, H.C. & Gadella, T.W. Jr. Biochemistry 46, 3775–3783 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Subach, O.M. et al. Chem. Biol. 15, 1116–1124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Waddington, S.N. et al. Cell 132, 397–409 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Giraud (Institute for Research and Development, France) for the hmuO and RpBphP6 genes, F. Subach (currently at the National Research Center “Kurchatov Institute”) for the pWA23h plasmid, G. Filonov (currently at Weill Cornell Medical College) for the iRFP713 adenovirus, J. Zhang for assistance in cell sorting, Y. Wang, L.-M. Ting, X. Wang and K. Piatkevich for help with mouse experiments, B. Taylor (PerkinElmer/Caliper) for assistance with the Living Image software and P. Guo for help with the confocal microscope. This work was supported by grants GM073913, CA164468 and EB013571 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

D.M.S. developed the proteins and characterized them in vitro, in cultured cells and in mice. V.V.V. directed and planned the project. V.V.V. and D.M.S. designed the experiments, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Vladislav V Verkhusha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Combined PDF

Supplementary Figures 1–13 (PDF 6005 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shcherbakova, D., Verkhusha, V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods 10, 751–754 (2013). https://doi.org/10.1038/nmeth.2521

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2521

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer