Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ferredoxin reductase affects p53-dependent, 5-fluorouracil–induced apoptosis in colorectal cancer cells

An Erratum to this article was published on 01 November 2001

A Correction to this article was published on 01 November 2001

Abstract

Loss of p53 gene function, which occurs in most colon cancer cells, has been shown to abolish the apoptotic response to 5-fluorouracil (5-FU). To identify genes downstream of p53 that might mediate these effects, we assessed global patterns of gene expression following 5-FU treatment of isogenic cells differing only in their p53 status. The gene encoding mitochondrial ferredoxin reductase (protein, FR; gene, FDXR) was one of the few genes significantly induced by p53 after 5-FU treatment. The FR protein was localized to mitochondria and suppressed the growth of colon cancer cells when over-expressed. Targeted disruption of the FDXR gene in human colon cancer cells showed that it was essential for viability, and partial disruption of the gene resulted in decreased sensitivity to 5-FU-induced apoptosis. These data, coupled with the effects of pharmacologic inhibitors of reactive oxygen species, indicate that FR contributes to p53-mediated apoptosis through the generation of oxidative stress in mitochondria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of SAGE data and northern-blot analysis of FDXR mRNA induction.
Figure 2: Expression of FDXR–GFP fusion proteins.
Figure 3: FDXR targeting constructs.
Figure 4: FDXR+/−/− clones are less sensitive to the apoptotic effects of 5-FU.
Figure 5: Increased DCF signal is associated with 5-FU–induced apoptosis.

Similar content being viewed by others

References

  1. O'Connor, P.M. et al. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 57, 4285–300 (1997).

    CAS  PubMed  Google Scholar 

  2. Lowe, S.W. et al. p53 status and the efficacy of cancer therapy in vivo. Science 266, 807–810 (1994).

    Article  CAS  Google Scholar 

  3. Bunz, F. et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest. 104, 263–269 (1999).

    Article  CAS  Google Scholar 

  4. Oren, M. Regulation of the p53 tumor suppressor protein. J. Biol. Chem. 274, 36031–36034 (1999).

    Article  CAS  Google Scholar 

  5. Prives, C. & Hall, P.A. The p53 pathway. J. Pathol. 187, 112–126 (1999).

    Article  CAS  Google Scholar 

  6. El-Deiry, W.S. Regulation of p53 downstream genes. Semin. Cancer Biol. 8, 345–357 (1998).

    Article  CAS  Google Scholar 

  7. Giaccia, A.J. & Kastan, M.B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973–2983 (1998).

    Article  CAS  Google Scholar 

  8. Johnson, T.M., Yu, Z.-X., Ferrans, V.J., Lowenstein, R.A. & Finkel, T. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc. Natl. Acad. Sci. USA 93, 11848–11852 (1996).

    Article  CAS  Google Scholar 

  9. Polyak, K., Xia, Y., Zweier, J.L., Kinzler, K.W. & Vogelstein, B. A model for p53 induced apoptosis. Nature 389, 300–304 (1997).

    Article  CAS  Google Scholar 

  10. Lee, J.M. Inhibition of p53-dependent apoptosis by the KIT tyrosine kinase: regulation of mitochondrial permeability transition and reactive oxygen species generation. Oncogene 17, 1653–1662 (1998).

    Article  CAS  Google Scholar 

  11. Li, P.F., Dietz, R. & von Harsdorf, R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J. 18, 6027–6036 (1999).

    Article  CAS  Google Scholar 

  12. Green, D.R. & Reed, J.C. Mitochondria and apoptosis. Science 281, 1309–12 (1998).

    Article  CAS  Google Scholar 

  13. Kroemer, G. & Reed, J.C. Mitochondrial control of cell death. Nature Med 6, 513–519 (2000).

    Article  CAS  Google Scholar 

  14. Velculescu, V.E., Zhang, L., Vogelstein, B. & Kinzler, K.W. Serial Analysis Of Gene Expression. Science 270, 484–487 (1995).

    Article  CAS  Google Scholar 

  15. El-Deiry, W.S., Kern, S.E., Pietenpol, J.A., Kinzler, K.W. & Vogelstein, B. Definition of a consensus binding site for p53. Nature Genet. 1, 45–49 (1992).

    Article  CAS  Google Scholar 

  16. Lambeth, J.D., Seybert, D.W., Lancaster, J.R., Salerno, J.C. & Kamin, H. Steroidogenic electron transport in adrenal cortex mitochondria. Mol. Cell. Biochem. 45, 13–31 (1982).

    Article  CAS  Google Scholar 

  17. Lin, D., Shi, Y.F. & Miller, W.L. Cloning and sequence of the human adrenodoxin reductase gene. Proc. Natl. Acad. Sci. USA 87, 8516–8520 (1990).

    Article  CAS  Google Scholar 

  18. Ziegler, G.A., Vonrhein, C., Hanukoglu, I. & Schulz, G.E. The structure of adrenodoxin reductase of mitochondrial P450 systems: electron transfer for steroid biosynthesis. J. Mol. Biol. 289, 981–990 (1999).

    Article  CAS  Google Scholar 

  19. Rapoport, R., Sklan, D. & Hanukoglu, I. Electron leakage from the adrenal cortex mitochondrial P450scc and P450c11 systems: NADPH and steroid dependence. Arch. Biochem. Biophys. 317, 412–416 (1995).

    Article  CAS  Google Scholar 

  20. Hanukoglu, I., Rapoport, R., Weiner, L. & Sklan, D. Electron leakage from the mitochondrial NADPH-adrenodoxin reductase- adrenodoxin-P450scc (cholesterol side chain cleavage) system. Arch. Biochem. Biophys. 305, 489–498 (1993).

    Article  CAS  Google Scholar 

  21. Yu, J. et al. Identification and classification of p53-regulated genes. Proc. Natl. Acad. Sci. USA 96, 14517–14522 (1999).

    Article  CAS  Google Scholar 

  22. Chan, T.A., Hermeking, H., Lengauer, C., Kinzler, K.W. & Vogelstein, B. 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616–620 (1999).

    Article  CAS  Google Scholar 

  23. Masramon, L. et al. Cytogenetic characterization of two colon cell lines by using conventional G-banding, comparative genomic hybridization, and whole chromosome painting. Cancer Genet. Cytogenet. 121, 17–21 (2000).

    Article  CAS  Google Scholar 

  24. Yu, J., Zhang, L., Hwang, P.M., Kinzler, K.W. & Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Molecular Cell 7, 673–682 (2001).

    Article  CAS  Google Scholar 

  25. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998).

    Article  CAS  Google Scholar 

  26. Pham, N.A., Robinson, B.H. & Hedley, D.W. Simultaneous detection of mitochondrial respiratory chain activity and reactive oxygen in digitonin-permeabilized cells using flow cytometry. Cytometry 41, 245–251 (2000).

    Article  CAS  Google Scholar 

  27. Kelso, G.F. et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: Antioxidant and antiapoptotic properties. J. Biol. Chem. 276, 4588–4596 (2001).

    Article  CAS  Google Scholar 

  28. Lill, R. & Kispal, G. Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem. Sci. 25, 352–356 (2000).

    Article  CAS  Google Scholar 

  29. Manzella, L., Barros, M.H. & Nobrega, F.G. ARH1 of Saccharomyces cerevisiae: A new essential gene that codes for a protein homologous to the human adrenodoxin reductase. Yeast 14, 839–846 (1998).

    Article  CAS  Google Scholar 

  30. Li, J., Saxena, S., Pain, D. & Dancis, A. Adrenodoxin reductase homolog (Arh1p) of yeast mitochondria required for iron homeostasis. J. Biol. Chem. 276, 1503–1509 (2001).

    Article  CAS  Google Scholar 

  31. Vogelstein, B., Lane, D. & Levine, A.J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  Google Scholar 

  32. Asher, G., Lotem, J., Cohen, B., Sachs, L. & Shaul, Y. Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proc. Natl. Acad. Sci. USA 98, 1188–1193 (2001).

    Article  CAS  Google Scholar 

  33. Meek, D.W. Mechanisms of switching on p53: a role for covalent modification? Oncogene 18, 7666–7675 (1999).

    Article  CAS  Google Scholar 

  34. Waldman, T., Kinzler, K.W. & Vogelstein, B. p21 is necessary for the p53-mediated G(1) arrest in human cancer cells. Cancer Res. 55, 5187–5190 (1995).

    CAS  PubMed  Google Scholar 

  35. Zhang, L. et al. Gene expression profiles in normal and cancer cells. Science 276, 1268–1272 (1997).

    Article  CAS  Google Scholar 

  36. Feinberg, A.P. & Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13 (1983).

    Article  CAS  Google Scholar 

  37. Jallepalli, P.V. et al. Securin is required for chromosomal stability in human cells. Cell 105, 445–457 (2001).

    Article  CAS  Google Scholar 

  38. He, T.C. et al. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514 (1998).

    Article  CAS  Google Scholar 

  39. Waldman, T., Lengauer, C., Kinzler, K.W. & Vogelstein, B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381, 713–716 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Meszler for help with cell imaging and all members of the Kinzler/Vogelstein Laboratories for advice and discussion. This work was supported by the Clayton Fund, the Miracle Foundation, and NIH grants CA 43460 and GM 07184. K.W.K. receives research funding from Genzyme Molecular Oncology (Genzyme) and K.W.K. and B.V. are consultants to Genzyme. Under a licensing agreement between the Johns Hopkins University and Genzyme, the SAGE technology was licensed to Genzyme, and K.W.K. and B.V. are entitled to a share of royalty received by the University from sales of the licensed technology. The terms of these arrangements are being managed by the University in accordance with its conflict of interest policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Vogelstein.

Supplementary information

Supplemental Figure A

a, p53 western blot of parental HCT116 (WT), TRP53-/-, FDXR+/+/- (G10, A11) and FDXR+/-/- (C2, D2) cell lines treated (+) with 50 mg/ml 5-FU for 48 h versus untreated (-) samples. b, p21 western blot of parental HCT116 (WT), FDXR+/+/- (G10), FDXR+/-/- (D2, C2) cell lines treated with 0 (for WT only, same baseline for all samples), 30 or 50 mg/ml 5-FU for 48 h. Equal amounts of protein (25 mg) were loaded in each well. (JPG 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, P., Bunz, F., Yu, J. et al. Ferredoxin reductase affects p53-dependent, 5-fluorouracil–induced apoptosis in colorectal cancer cells. Nat Med 7, 1111–1117 (2001). https://doi.org/10.1038/nm1001-1111

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1001-1111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing