Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suppression of bone formation by osteoclastic expression of semaphorin 4D

Abstract

Most of the currently available drugs for osteoporosis inhibit osteoclastic bone resorption; only a few drugs promote osteoblastic bone formation. It is thus becoming increasingly necessary to identify the factors that regulate bone formation. We found that osteoclasts express semaphorin 4D (Sema4D), previously shown to be an axon guidance molecule, which potently inhibits bone formation. The binding of Sema4D to its receptor Plexin-B1 on osteoblasts resulted in the activation of the small GTPase RhoA, which inhibits bone formation by suppressing insulin-like growth factor-1 (IGF-1) signaling and by modulating osteoblast motility. Sema4d−/− mice, Plxnb1−/− mice and mice expressing a dominant-negative RhoA specifically in osteoblasts showed an osteosclerotic phenotype due to augmented bone formation. Notably, Sema4D-specific antibody treatment markedly prevented bone loss in a model of postmenopausal osteoporosis. Thus, Sema4D has emerged as a new therapeutic target for the discovery and development of bone-increasing drugs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of bone formation by osteoclast-derived Sema4D.
Figure 2: Plexin-B1 functions as a receptor for Sema4D in osteoblasts.
Figure 3: Inhibition of bone formation by the Sema4D–Plexin-B1–RhoA axis.
Figure 4: Osteoblas-spec st-specific loss of function of Rho GTPase leads to an osteosclerotic phenotype.
Figure 5: The mechanism of Sema4D–Plexin-B1–RhoA-mediated regulation of bone formation.
Figure 6: The bone-increasing effect of Sema4D–Plexin-B1 blockade.

Similar content being viewed by others

References

  1. Martin, T.J. & Sims, N.A. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol. Med. 11, 76–81 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Hayden, J.M., Mohan, S. & Baylink, D.J. The insulin-like growth factor system and the coupling of formation to resorption. Bone 17, 93S–98S (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Hattner, R., Epker, B.N. & Frost, H.M. Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature 206, 489–490 (1965).

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi, H., Epker, B. & Frost, H.M. Resorption precedes formative activity. Surg. Forum 15, 437–438 (1964).

    CAS  PubMed  Google Scholar 

  5. Tang, Y. et al. TGF-β1−induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 15, 757–765 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matsuo, K. & Irie, N. Osteoclast-osteoblast communication. Arch. Biochem. Biophys. 473, 201–209 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Parfitt, A.M., Mundy, G.R., Roodman, G.D., Hughes, D.E. & Boyce, B.F. A new model for the regulation of bone resorption, with particular reference to the effects of bisphosphonates. J. Bone Miner. Res. 11, 150–159 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Larrivée, B., Freitas, C., Suchting, S., Brunet, I. & Eichmann, A. Guidance of vascular development: lessons from the nervous system. Circ. Res. 104, 428–441 (2009).

    Article  PubMed  Google Scholar 

  9. Suzuki, K., Kumanogoh, A. & Kikutani, H. Semaphorins and their receptors in immune cell interactions. Nat. Immunol. 9, 17–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Tran, T.S., Kolodkin, A.L. & Bharadwaj, R. Semaphorin regulation of cellular morphology. Annu. Rev. Cell Dev. Biol. 23, 263–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Huber, A.B., Kolodkin, A.L., Ginty, D.D. & Cloutier, J.F. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu. Rev. Neurosci. 26, 509–563 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Dickson, B.J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Tamagnone, L. & Comoglio, P.M. Signalling by semaphorin receptors: cell guidance and beyond. Trends Cell Biol. 10, 377–383 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Irie, N. et al. Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis. J. Biol. Chem. 284, 14637–14644 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sutton, A.L. et al. Semaphorin 3B is a 1,25-dihydroxyvitamin D3-induced gene in osteoblasts that promotes osteoclastogenesis and induces osteopenia in mice. Mol. Endocrinol. 22, 1370–1381 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takegahara, N. et al. Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis. Nat. Cell Biol. 8, 615–622 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, C. et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 4, 111–121 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Delorme, G., Saltel, F., Bonnelye, E., Jurdic, P. & Machuca-Gayet, I. Expression and function of semaphorin 7A in bone cells. Biol. Cell 97, 589–597 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Kumanogoh, A. et al. Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100: a novel mechanism for regulating B cell signaling. Immunity 13, 621–631 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Elhabazi, A., Delaire, S., Bensussan, A., Boumsell, L. & Bismuth, G. Biological activity of soluble CD100. I. The extracellular region of CD100 is released from the surface of T lymphocytes by regulated proteolysis. J. Immunol. 166, 4341–4347 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Tamagnone, L. et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 99, 71–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Swiercz, J.M., Worzfeld, T. & Offermanns, S. ErbB-2 and Met reciprocally regulate cellular signaling via plexin-B1. J. Biol. Chem. 283, 1893–1901 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Kruger, R.P., Aurandt, J. & Guan, K.L. Semaphorins command cells to move. Nat. Rev. Mol. Cell Biol. 6, 789–800 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Oinuma, I., Ishikawa, Y., Katoh, H. & Negishi, M. The Semaphorin 4D receptor Plexin-B1 is a GTPase activating protein for R-Ras. Science 305, 862–865 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Driessens, M.H., Olivo, C., Nagata, K., Inagaki, M. & Collard, J.G. B plexins activate Rho through PDZ-RhoGEF. FEBS Lett. 529, 168–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Perrot, V., Vazquez-Prado, J. & Gutkind, J.S. Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ-RhoGEF. J. Biol. Chem. 277, 43115–43120 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Swiercz, J.M., Kuner, R., Behrens, J. & Offermanns, S. Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron 35, 51–63 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Kobayashi, K. et al. Survival of developing motor neurons mediated by Rho GTPase signaling pathway through Rho-kinase. J. Neurosci. 24, 3480–3488 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dacquin, R., Starbuck, M., Schinke, T. & Karsenty, G. Mouse α1(I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast. Dev. Dyn. 224, 245–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Sordella, R. et al. Modulation of CREB activity by the Rho GTPase regulates cell and organism size during mouse embryonic development. Dev. Cell 2, 553–565 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Gomez, C. et al. Expression of Semaphorin-3A and its receptors in endochondral ossification: potential role in skeletal development and innervation. Dev. Dyn. 234, 393–403 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Soker, S., Takashima, S., Miao, H.Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Behar, O., Golden, J.A., Mashimo, H., Schoen, F.J. & Fishman, M.C. Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383, 525–528 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Sekido, Y. et al. Human semaphorins A(V) and IV reside in the 3p21.3 small cell lung cancer deletion region and demonstrate distinct expression patterns. Proc. Natl. Acad. Sci. USA 93, 4120–4125 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kitsukawa, T., Shimono, A., Kawakami, A., Kondoh, H. & Fujisawa, H. Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development 121, 4309–4318 (1995).

    CAS  PubMed  Google Scholar 

  36. Koh, J.M. et al. Association study of semaphorin 7a (sema7a) polymorphisms with bone mineral density and fracture risk in postmenopausal Korean women. J. Hum. Genet. 51, 112–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Kumanogoh, A. et al. Requirement for the lymphocyte semaphorin, CD100, in the induction of antigen-specific T cells and the maturation of dendritic cells. J. Immunol. 169, 1175–1181 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Delaire, S. et al. Biological activity of soluble CD100. II. Soluble CD100, similarly to H-SemaIII, inhibits immune cell migration. J. Immunol. 166, 4348–4354 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Hirschberg, A. et al. Gene deletion mutants reveal a role for semaphorin receptors of the plexin-B family in mechanisms underlying corticogenesis. Mol. Cell. Biol. 30, 764–780 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Di Benedetto, A. et al. N-cadherin and cadherin 11 modulate postnatal bone growth and osteoblast differentiation by distinct mechanisms. J. Cell Sci. 123, 2640–2648 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Diarra, D. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13, 156–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Matsumoto, T. & Abe, M. TGF-β-related mechanisms of bone destruction in multiple myeloma. Bone 48, 129–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Yadav, V.K. et al. Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat. Med. 16, 308–312 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shi, W. et al. The class IV semaphorin CD100 plays nonredundant roles in the immune system: defective B and T cell activation in CD100-deficient mice. Immunity 13, 633–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Friedel, R.H. et al. Gene targeting using a promoterless gene trap vector (“targeted trapping”) is an efficient method to mutate a large fraction of genes. Proc. Natl. Acad. Sci. USA 102, 13188–13193 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nishikawa, K. et al. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J. Clin. Invest. 120, 3455–3465 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, S. et al. Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev. 17, 1979–1991 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takayanagi, H. et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889–901 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Koga, T. et al. NFAT and Osterix cooperatively regulate bone formation. Nat. Med. 11, 880–885 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Gregory, C.A., Gunn, W.G., Peister, A. & Prockop, D.J. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal. Biochem. 329, 77–84 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Okuno, T. et al. Roles of Sema4D-plexin-B1 interactions in the central nervous system for pathogenesis of experimental autoimmune encephalomyelitis. J. Immunol. 184, 1499–1506 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Regev, A., Goldman, S. & Shalev, E. Expression of plexin-B1 in the mouse ovary and its possible role in follicular development. Fertil. Steril. 84 (suppl 2), 1210–1219 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Shinohara, M. et al. Nox1 redox signaling mediates oncogenic Ras-induced disruption of stress fibers and focal adhesions by down-regulating Rho. J. Biol. Chem. 282, 17640–17648 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Shinohara, M. et al. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell 132, 794–806 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Sotobori, T. et al. Bone morphogenetic protein-2 promotes the haptotactic migration of murine osteoblastic and osteosarcoma cells by enhancing incorporation of integrin 1 into lipid rafts. Exp. Cell Res. 312, 3927–3938 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to G. Karsenty (Columbia University), K. Kobayashi (Fukushima Medical University School of Medicine), A. Kumanogoh (Osaka University) and T. Kitamura (The University of Tokyo) for kindly providing α(1)I-Cre mice, CAT-RhoA DN mice, recombinant Fc-sema4D protein, and the retrovirus vectors and Plat-E cells, respectively. We also thank E. Sumiya, A. Suematsu, Y. Kunisawa, T. Ando, K. Okamoto, T. Nakashima, M. Oh-hora, M. Hayashi, A. Terashima, Y. Nagai and H. Negishi for discussion and assistance. This work was supported in part by a grant for the Exploratory Research for Advanced Technology, Takayanagi Osteonetwork Project from the Japan Science and Technology Agency, Grant-in-Aid for Young Scientist A, Grant-in-Aid for Challenging Exploratory Research and Grant-in-Aid for JSPS Fellows from the Japan Society for the Promotion of Science, a grant for the Global Center of Excellence Program from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and grants from the Ichiro Kanehara Foundation, the Uehara Memorial Foundation and the Naito Foundation.

Author information

Authors and Affiliations

Authors

Contributions

T.N.-K. performed most of the experiments, interpreted the results and prepared the manuscript. M.S. performed the molecular analysis of the regulation of bone formation by RhoA and contributed to the GTPase analysis and manuscript preparation. N.K. performed the FACS analysis. H.B. generated adenoviruses and contributed to data interpretation. T.K. conducted the GeneChip analysis. R.H.F. generated Plxnb1−/− mice and contributed to data interpretation. H.T. directed the project and wrote the manuscript.

Corresponding author

Correspondence to Hiroshi Takayanagi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 3132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negishi-Koga, T., Shinohara, M., Komatsu, N. et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med 17, 1473–1480 (2011). https://doi.org/10.1038/nm.2489

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2489

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing