Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chromosome aberrations in solid tumors

Abstract

Chromosome aberrations in human solid tumors are hallmarks of gene deregulation and genome instability. This review summarizes current knowledge regarding aberrations, discusses their functional importance, suggests mechanisms by which aberrations may form during cancer progression and provides examples of clinical advances that have come from studies of chromosome aberrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of mechanisms by which chromosomal aberrations arise plus a summary of the ability of commonly applied technologies to detect the aberrations.
Figure 2: Schematic representation of receptor tyrosine kinase–mediated signaling.
Figure 3: Schematic illustration of chromosomal evolution in human solid tumor progression.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Hampton, G.M. et al. Simultaneous assessment of loss of heterozygosity at multiple microsatellite loci using semi-automated fluorescence-based detection: subregional mapping of chromosome 4 in cervical carcinoma. Proc. Natl. Acad. Sci. USA 93, 6704–6709 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kallioniemi, A. et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258, 818–821 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Pinkel, D. et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20, 207–211 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Solinas-Toldo, S. et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20, 399–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Pollack, J.R. et al. Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc. Natl. Acad. Sci. USA 99, 12963–12968 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schrock, E. et al. Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Fauth, C. & Speicher, M.R. Classifying by colors: FISH-based genome analysis. Cytogenet. Cell. Genet. 93, 1–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Speicher, M.R. & Ward, D.C. The coloring of cytogenetics. Nat. Med. 2, 1046–1048 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Lichter, P. Multicolor FISHing: what's the catch? Trends Genet. 13, 475–479 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Imoto, H. et al. Direct determination of NotI cleavage sites in the genomic DNA of adult mouse kidney and human trophoblast using whole-range restriction landmark genomic scanning. DNA Res. 1, 239–243 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Lisitsyn, N. & Wigler, M. Cloning the differences between two complex genomes. Science 259, 946–951 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Haigis, K.M., Caya, J.G., Reichelderfer, M. & Dove, W.F. Intestinal adenomas can develop with a stable karyotype and stable microsatellites. Proc. Natl. Acad. Sci. USA 99, 8927–8931 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haigis, K.M. & Dove, W.F. A Robertsonian translocation suppresses a somatic recombination pathway to loss of heterozygosity. Nat. Genet. 33, 33–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Sieber, O.M. et al. Analysis of chromosomal instability in human colorectal adenomas with two mutational hits at APC. Proc. Natl. Acad. Sci. USA 99, 16910–16915 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guan, X.Y., Meltzer, P.S., Dalton, W.S. & Trent, J.M. Identification of cryptic sites of DNA sequence amplification in human breast cancer by chromosome microdissection. Nat. Genet. 8, 155–161 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Knuutila, S., Autio, K. & Aalto, Y. Online access to CGH data of DNA sequence copy number changes. Am. J. Pathol. 157, 689 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lassus, H. et al. Comparison of serous and mucinous ovarian carcinomas: distinct pattern of allelic loss at distal 8p and expression of transcription factor GATA-4. Lab. Invest. 81, 517–526 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Smith, J.S. et al. Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype. Oncogene 18, 4144–4152 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Bocker, T., Ruschoff, J. & Fishel, R. Molecular diagnostics of cancer predisposition: hereditary non-polyposis colorectal carcinoma and mismatch repair defects. Biochim. Biophys. Acta 1423, O1–O10 (1999).

    CAS  PubMed  Google Scholar 

  21. Muleris, M., Dutrillaux, A.M., Olschwang, S., Salmon, R.J. & Dutrillaux, B. Predominance of normal karyotype in colorectal tumors from hereditary non-polyposis colorectal cancer patients. Genes Chromosomes Cancer 14, 223–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Muleris, M., Salmon, R.J. & Dutrillaux, B. Cytogenetics of colorectal adenocarcinomas. Cancer Genet. Cytogenet. 46, 143–156 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Soulie, P. et al. TP53 status and gene amplification in human colorectal carcinomas. Cancer Genet. Cytogenet. 115, 118–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Remvikos, Y. et al. DNA-repeat instability is associated with colorectal cancers presenting minimal chromosome rearrangements. Genes Chromosomes Cancer 12, 272–276 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Schlegel, J. et al. Comparative genomic in situ hybridization of colon carcinomas with replication error. Cancer Res. 55, 6002–6005 (1995).

    CAS  PubMed  Google Scholar 

  26. Hedenfalk, I. et al. Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344, 539–548 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Tirkkonen, M. et al. Distinct somatic genetic changes associated with tumor progression in carriers of BRCA1 and BRCA2 germ-line mutations. Cancer Res. 57, 1222–1227 (1997).

    CAS  PubMed  Google Scholar 

  28. Wessels, L.F. et al. Molecular classification of breast carcinomas by comparative genomic hybridization: a specific somatic genetic profile for BRCA1 tumors. Cancer Res. 62, 7110–7117 (2002).

    CAS  PubMed  Google Scholar 

  29. Slamon, D.J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Alitalo, K., Schwab, M., Lin, C.C., Varmus, H.E. & Bishop, J.M. Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc. Natl. Acad. Sci. USA 80, 1707–1711 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hinds, P.W., Dowdy, S.F., Eaton, E.N., Arnold, A. & Weinberg, R.A. Function of a human cyclin gene as an oncogene. Proc. Natl. Acad. Sci. USA 91, 709–713 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wahl, G.M., Padgett, R.A. & Stark, G.R. Gene amplification causes overproduction of the first three enzymes of UMP synthesis in N-(phosphonacetyl)-L-aspartate-resistant hamster cells. J. Biol. Chem. 254, 8679–8689 (1979).

    CAS  PubMed  Google Scholar 

  33. Schimke, R.T., Kaufman, R.J., Alt, F.W. & Kellems, R.F. Gene amplification and drug resistance in cultured murine cells. Science 202, 1051–1055 (1978).

    Article  CAS  PubMed  Google Scholar 

  34. Banerjee, D. et al. Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidylate synthase. Biochim. Biophys. Acta 1587, 164–173 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Gorre, M.E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Koivisto, P. et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 57, 314–319 (1997).

    CAS  PubMed  Google Scholar 

  37. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Orlow, I. et al. Deletion of the p16 and p15 genes in human bladder tumors. J. Natl. Cancer Inst. 87, 1524–1529 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Nagai, M.A. et al. Detailed deletion mapping of chromosome segment 17q12–21 in sporadic breast tumours. Genes Chromosomes Cancer 11, 58–62 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Cavenee, W.K. et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305, 779–784 (1983).

    Article  CAS  PubMed  Google Scholar 

  41. Baker, S.J. et al. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res. 50, 7717–7722 (1990).

    CAS  PubMed  Google Scholar 

  42. Ruivenkamp, C.A. et al. Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nat. Genet. 31, 295–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Snijders, A.M. et al. Shaping tumor and drug resistant genomes by instability and selection. Oncogene 22, 4370–4379 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Linardopoulos, S., Silva, S., Klein, G. & Balmain, A. Allele-specific loss or imbalance of chromosomes 9, 15, and 16 in B-cell tumors from interspecific F1 hybrid mice carrying Emu-c-myc or N-myc transgenes. Int. J. Cancer. 88, 920–927 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Hodgson, G. et al. Genome scanning with array CGH delineates regional alterations in mouse islet carcinomas. Nat. Genet. 29, 459–464 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Rowley, J.D. The critical role of chromosome translocations in human leukemias. Annu. Rev. Genet. 32, 495–519 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. de Klein, A. et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300, 765–767 (1982).

    Article  CAS  PubMed  Google Scholar 

  48. Davis, R.J., D'Cruz, C.M., Lovell, M.A., Biegel, J.A. & Barr, F.G. Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 54, 2869–2872 (1994).

    CAS  PubMed  Google Scholar 

  49. Galili, N. et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat. Genet. 5, 230–235 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Massion, P.P. et al. Genomic copy number analysis of non-small cell lung cancer using array comparative genomic hybridization: implications of the phosphatidylinositol 3-kinase pathway. Cancer Res. 62, 3636–3640 (2002).

    CAS  PubMed  Google Scholar 

  51. Bekri, S. et al. Detailed map of a region commonly amplified at 11q13–q14 in human breast carcinoma. Cytogenet. Cell Genet. 79, 125–131 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Hyman, E. et al. Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res. 62, 6240–6245 (2002).

    CAS  PubMed  Google Scholar 

  53. Morris, D.W. & Dutra, J.C. Identification of a MMTV insertion mutation within the coding region of the Fgf-3 protooncogene. Virology 238, 161–165 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Morini, M. et al. Hyperplasia and impaired involution in the mammary gland of transgenic mice expressing human FGF4. Oncogene 19, 6007–6014 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Quon, K.C. & Berns, A. Haplo-insufficiency? Let me count the ways. Genes Dev. 15, 2917–2921 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Fero, M.L., Randel, E., Gurley, K.E., Roberts, J.M. & Kemp, C.J. The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396, 177–180 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Michel, L.S. et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409, 355–359 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Herblot, S., Aplan, P.D. & Hoang, T. Gradient of E2A activity in B-cell development. Mol. Cell. Biol. 22, 886–900 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goss, K.H. et al. Enhanced tumor formation in mice heterozygous for Blm mutation. Science 297, 2051–2053 (2002).

    Article  PubMed  CAS  Google Scholar 

  60. Donehower, L.A. et al. Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Genes Dev. 9, 882–895 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Shayesteh, L. et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat. Genet. 21, 99–102 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Willenbucher, R.F. et al. Genomic instability is an early event during the progression pathway of ulcerative-colitis-related neoplasia. Am. J. Pathol. 154, 1825–1830 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Farag, S.S. et al. Isolated trisomy of chromosomes 8, 11, 13 and 21 is an adverse prognostic factor in adults with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. Int. J. Oncol. 21, 1041–1051 (2002).

    CAS  PubMed  Google Scholar 

  64. Snijders, A.M. et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nat. Genet. 29, 263–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Zardo, G. et al. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat. Genet. 32, 453–458 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Cutler, P. Protein arrays: the current state-of-the-art. Proteomics 3, 3–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Bichsel, V.E., Liotta, L.A. & Petricoin, E.F. 3rd. Cancer proteomics: from biomarker discovery to signal pathway profiling. Cancer J. 7, 69–78 (2001).

    CAS  PubMed  Google Scholar 

  68. van't Veer, L.J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  Google Scholar 

  69. He, J., Olson, J.J. & James, C.D. Lack of p16INK4 or retinoblastoma protein (pRb), or amplification-associated overexpression of cdk4 is observed in distinct subsets of malignant glial tumors and cell lines. Cancer Res. 55, 4833–4836 (1995).

    CAS  PubMed  Google Scholar 

  70. He, J. et al. CDK4 amplification is an alternative mechanism to p16 gene homozygous deletion in glioma cell lines. Cancer Res. 54, 5804–5807 (1994).

    CAS  PubMed  Google Scholar 

  71. Bartkova, J. et al. The p16-cyclin D/Cdk4-pRb pathway as a functional unit frequently altered in melanoma pathogenesis. Cancer Res. 56, 5475–5483 (1996).

    CAS  PubMed  Google Scholar 

  72. Namazie, A. et al. Cyclin D1 amplification and p16(MTS1/CDK4I) deletion correlate with poor prognosis in head and neck tumors. Laryngoscope 112, 472–481 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Lukas, J., Aagaard, L., Strauss, M. & Bartek, J. Oncogenic aberrations of p16INK4/CDKN2 and cyclin D1 cooperate to deregulate G1 control. Cancer Res. 55, 4818–4823 (1995).

    CAS  PubMed  Google Scholar 

  74. Hahn, W.C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Zimonjic, D., Brooks, M.W., Popescu, N., Weinberg, R.A. & Hahn, W.C. Derivation of human tumor cells in vitro without widespread genomic instability. Cancer Res. 61, 8838–8844 (2001).

    CAS  PubMed  Google Scholar 

  76. Pelengaris, S., Khan, M. & Evan, G.I. Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109, 321–334 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Abdel-Rahman, W.M. et al. Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement. Proc. Natl. Acad. Sci. USA 98, 2538–2543 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hartwell, L.H. & Kastan, M.B. Cell cycle control and cancer. Science 266, 1821–8218 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Gong, G. et al. Genetic changes in paired atypical and usual ductal hyperplasia of the breast by comparative genomic hybridization. Clin. Cancer Res. 7, 2410–2414 (2001).

    CAS  PubMed  Google Scholar 

  80. O'Connell, P. et al. Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. J. Natl. Cancer Inst. 90, 697–703 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Ried, T. et al. Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer 15, 234–245 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Steinbeck, R.G. Chromosome division figures reveal genomic instability in tumorigenesis of human colon mucosa. Br. J. Cancer 77, 1027–1033 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kuukasjarvi, T. et al. Genetic changes in intraductal breast cancer detected by comparative genomic hybridization. Am. J. Pathol. 150, 1465–1471 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Waldman, F.M. et al. Chromosomal alterations in ductal carcinomas in situ and their in situ recurrences. J. Natl. Cancer Inst. 92, 313–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Kuukasjarvi, T. et al. Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res. 57, 1597–1604 (1997).

    CAS  PubMed  Google Scholar 

  86. Yoon, D.S. et al. Variable levels of chromosomal instability and mitotic spindle checkpoint defects in breast cancer. Am. J. Pathol. 161, 391–397 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Haber, J.E. DNA recombination: the replication connection. Trends Biochem. Sci. 24, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Wood, R.D., Mitchell, M., Sgouros, J. & Lindahl, T. Human DNA repair genes. Science 291, 1284–1289 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Khanna, K.K., Lavin, M.F., Jackson, S.P. & Mulhern, T.D. ATM, a central controller of cellular responses to DNA damage. Cell Death Differ. 8, 1052–1065 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Pierce, A.J. et al. Double-strand breaks and tumorigenesis. Trends Cell Biol. 11, S52–S59 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. van Gent, D.C., Hoeijmakers, J.H. & Kanaar, R. Chromosomal stability and the DNA double-stranded break connection. Nat. Rev. Genet. 2, 196–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Thompson, L.H. & Schild, D. Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutat. Res. 477, 131–153 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Thompson, L.H. & Schild, D. Recombinational DNA repair and human disease. Mutat. Res. 509, 49–78 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Tibbetts, R.S. et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. 14, 2989–3002 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Balmain, A. Cancer: new-age tumour suppressors. Nature 417, 235–237 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Weaver, Z. et al. Mammary tumors in mice conditionally mutant for Brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 21, 5097–5107 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Jallepalli, P.V. & Lengauer, C. Chromosome segregation and cancer: cutting through the mystery. Nat. Rev. Cancer 1, 109–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. D'Assoro, A.B., Lingle, W.L. & Salisbury, J.L. Centrosome amplification and the development of cancer. Oncogene 21, 6146–6153 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Fisk, H.A., Mattison, C.P. & Winey, M. Centrosomes and tumour suppressors. Curr. Opin. Cell Biol. 14, 700–705 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Nigg, E.A. Centrosome aberrations: cause or consequence of cancer progression? Nat. Rev. Cancer 2, 815–825 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Cahill, D.P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Nasmyth, K. Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559–565 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Hastie, N.D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–868 (1990).

    Article  CAS  PubMed  Google Scholar 

  104. Rudolph, K.L., Millard, M., Bosenberg, M.W. & DePinho, R.A. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat. Genet. 28, 155–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Harrington, L. & Robinson, M.O. Telomere dysfunction: multiple paths to the same end. Oncogene 21, 592–597 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. de Lange, T. Protection of mammalian telomeres. Oncogene. 21, 532–540 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Forsyth, N.R., Wright, W.E. & Shay, J.W. Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation 69, 188–197 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Gordon, K.E. et al. High levels of telomere dysfunction bestow a selective disadvantage during the progression of human oral squamous cell carcinoma. Cancer Res. 63, 458–467 (2003).

    CAS  PubMed  Google Scholar 

  109. Bastian, B.C. et al. Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res. 60, 1968–1973 (2000).

    CAS  PubMed  Google Scholar 

  110. Greaves, M. Is telomerase activity in cancer due to selection of stem cells and differentiation arrest? Trends Genet. 12, 127–128 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Maser, R.S. & DePinho, R.A. Connecting chromosomes, crisis, and cancer. Science 297, 565–569 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Artandi, S.E. & DePinho, R.A. A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr. Opin. Genet. Dev. 10, 39–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Henson, J.D., Neumann, A.A., Yeager, T.R. & Reddel, R.R. Alternative lengthening of telomeres in mammalian cells. Oncogene 21, 598–610 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Poremba, C. et al. Telomerase activity in human proliferative breast lesions. Int. J. Oncol. 12, 641–648 (1998).

    CAS  PubMed  Google Scholar 

  115. Bednarek, A.K., Sahin, A., Brenner, A.J., Johnston, D.A. & Aldaz, C.M. Analysis of telomerase activity levels in breast cancer: positive detection at the in situ breast carcinoma stage. Clin. Cancer Res. 3, 11–16 (1997).

    CAS  PubMed  Google Scholar 

  116. Sugino, T. et al. Telomerase activity in human breast cancer and benign breast lesions: diagnostic applications in clinical specimens, including fine needle aspirates. Int. J. Cancer. 69, 301–306 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. de Lange, T. et al. Structure and variability of human chromosome ends. Mol. Cell Biol. 10, 518–527 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Artandi, S.E. Telomere shortening and cell fates in mouse models of neoplasia. Trends Mol. Med. 8, 44–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Lamprecht, S.A. & Lipkin, M. Migrating colonic crypt epithelial cells: primary targets for transformation. Carcinogenesis 23, 1777–1780 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Medina, D. Biological and molecular characteristics of the premalignant mouse mammary gland. Biochim. Biophys. Acta 1603, 1–9 (2002).

    CAS  PubMed  Google Scholar 

  121. Kim, K.M. & Shibata, D. Methylation reveals a niche: stem cell succession in human colon crypts. Oncogene 21, 5441–5449 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Sokolova, I.A. et al. The development of a multitarget, multicolor fluorescence in situ hybridization assay for the detection of urothelial carcinoma in urine. J. Mol. Diagn. 2, 116–123 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Schenk, T. et al. Detection of chromosomal aneuploidy by interphase fluorescence in situ hybridization in bronchoscopically gained cells from lung cancer patients. Chest 111, 1691–1696 (1997).

    Article  CAS  PubMed  Google Scholar 

  124. Ichikawa, D. et al. Analysis of numerical aberrations of specific chromosomes by fluorescent in situ hybridization as a diagnostic tool in breast cancer. Cancer 77, 2064–2069 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Gomez Lahoz, E. et al. Cyclin D- and E-dependent kinases and the p57(KIP2) inhibitor: cooperative interactions in vivo. Mol. Cell Biol. 19, 353–363 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bastian, B.C., Wesselmann, U., Pinkel, D. & Leboit, P.E. Molecular cytogenetic analysis of Spitz nevi shows clear differences to melanoma. J. Invest. Dermatol. 113, 1065–1069 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Chen, X.Q. et al. Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat. Med. 2, 1033–1035 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Koshiji, M., Yonekura, Y., Saito, T. & Yoshioka, K. Microsatellite analysis of fecal DNA for colorectal cancer detection. J. Surg. Oncol. 80, 34–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Eisenberger, C.F. et al. Diagnosis of renal cancer by molecular urinalysis. J. Natl. Cancer Inst. 91, 2028–2032 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Nawroz, H., Koch, W., Anker, P., Stroun, M. & Sidransky, D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat. Med. 2, 1035–1037 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Utting, M., Werner, W., Dahse, R., Schubert, J. & Junker, K. Microsatellite analysis of free tumor DNA in urine, serum, and plasma of patients: a minimally invasive method for the detection of bladder cancer. Clin. Cancer Res. 8, 35–40 (2002).

    CAS  PubMed  Google Scholar 

  132. Seeger, R.C. et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N. Engl. J. Med. 313, 1111–1116 (1985).

    Article  CAS  PubMed  Google Scholar 

  133. Suzuki, S. et al. An approach to analysis of large-scale correlations between genome changes and clinical endpoints in ovarian cancer. Cancer Res. 60, 5382–5385 (2000).

    CAS  PubMed  Google Scholar 

  134. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. van de Vijver, M.J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Ramaswamy, S., Ross, K.N., Lander, E.S. & Golub, T.R. A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33, 49–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Hanna, W. Testing for HER2 status. Oncology 61, 22–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Vogel, C.L. et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 20, 719–726 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Baselga, J. & Hammond, L.A. HER-targeted tyrosine-kinase inhibitors. Oncology 63 Suppl 1, 6–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Baselga, J. Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 7 Suppl 4, 2–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Mendelsohn, J. Targeting the epidermal growth factor receptor for cancer therapy. J. Clin. Oncol. 20, 1S–13S (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Levitzki, A. Tyrosine kinases as targets for cancer therapy. Eur. J. Cancer 38 Suppl 5, S11–S18 (2002).

    Article  PubMed  Google Scholar 

  143. Barlund, M. et al. Multiple genes at 17q23 undergo amplification and overexpression in breast cancer. Cancer Res. 60, 5340–5344 (2000).

    CAS  PubMed  Google Scholar 

  144. Barlund, M. et al. Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J. Natl. Cancer Inst. 92, 1252–1259 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Klein, C.A. et al. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc. Natl. Acad. Sci. USA 96, 4494–4499 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Aebi, S. et al. Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res. 56, 3087–3090 (1996).

    CAS  PubMed  Google Scholar 

  147. Albertson, D.G. et al. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat. Genet. 25, 144–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Jing, J. et al. Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules. Proc. Natl. Acad. Sci. USA 95, 8046–8051 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Whitfield, M.L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell. 13, 1977–2000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lipshutz, R.J., Fodor, S.P., Gingeras, T.R. & Lockhart, D.J. High density synthetic oligonucleotide arrays. Nat. Genet. 21, 20–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Heid, C.A., Stevens, J., Livak, K.J. & Williams, P.M. Real time quantitative PCR. Genome Res. 6, 986–994 (1996).

    Article  CAS  PubMed  Google Scholar 

  153. Saha, S. et al. Using the transcriptome to annotate the genome. Nat. Biotechnol. 20, 508–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Yan, H., Yuan, W., Velculescu, V.E., Vogelstein, B. & Kinzler, K.W. Allelic variation in human gene expression. Science 297, 1143 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Costello, J.F., Plass, C. & Cavenee, W.K. Restriction landmark genome scanning. Methods Mol. Biol. 200, 53–70 (2002).

    CAS  PubMed  Google Scholar 

  156. Jones, P.A. & Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Knezevic, V. et al. Proteomic profiling of the cancer microenvironment by antibody arrays. Proteomics 1, 1271–1278 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. Paweletz, C.P. et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. Rubin, R.B. & Merchant, M. A rapid protein profiling system that speeds study of cancer and other diseases. Am. Clin. Lab. 19, 28–29 (2000).

    CAS  PubMed  Google Scholar 

  160. Iyer, V.R. et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533–538 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Horak, C.E. et al. GATA-1 binding sites mapped in the β-globin locus by using mammalian chIp-chip analysis. Proc. Natl. Acad. Sci. USA 99, 2924–2929 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Liotta, L. & Petricoin, E. Molecular profiling of human cancer. Nat. Rev. Genet. 1, 48–56 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the United States Public Health Service and the Avon Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donna G Albertson or Joe W Gray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albertson, D., Collins, C., McCormick, F. et al. Chromosome aberrations in solid tumors. Nat Genet 34, 369–376 (2003). https://doi.org/10.1038/ng1215

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing