Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Development and function of human innate immune cells in a humanized mouse model

A Corrigendum to this article was published on 08 December 2017

This article has been updated

Abstract

Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34+ progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Efficient engraftment of human hematopoietic cells in MITRG and MISTRG mice.
Figure 2: MITRG and MISTRG mice support efficient myeloid cell development in lymphoid and nonlymphoid tissues.
Figure 3: Monocytes in MITRG and MISTRG mice are functional.
Figure 4: Human NK cells develop efficiently in MISTRG mice.
Figure 5: Human NK cells in MITRSG mice are fully functional.
Figure 6: Infiltration and growth of a tumor in MISTRG mice.

Similar content being viewed by others

Change history

  • 08 November 2017

    In the version of this article initially published, the cells labeled Me290 were Me275 cells. Both Me275 and Me290 are human metastatic HLA-A201+ melanoma cell lines, and both of them were obtained from the Ludwig Cancer Institute. Therefore, the mislabeling does not affect the conclusions of the paper. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Mestas, J. & Hughes, C.C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Rongvaux, A. et al. Human hemato-lymphoid system mice: current use and future potential for medicine. Annu. Rev. Immunol. 31, 635–674 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shultz, L.D., Brehm, M.A., Garcia-Martinez, J.V. & Greiner, D.L. Humanized mice for immune system investigation: progress, promise and challenges. Nat. Rev. Immunol. 12, 786–798 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tanaka, S. et al. Development of mature and functional human myeloid subsets in jematopoietic stem cell-engrafted NOD/SCID/IL2rgammaKO mice. J. Immunol. 188, 6145–6155 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Li, Y. et al. Induction of functional human macrophages from bone marrow promonocytes by M-CSF in humanized mice. J. Immunol. 191, 3192–3199 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Gille, C. et al. Monocytes derived from humanized neonatal NOD/SCID/IL2Rgamma(null) mice are phenotypically immature and exhibit functional impairments. Hum. Immunol. 73, 346–354 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Huntington, N.D. et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J. Exp. Med. 206, 25–34 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Strowig, T. et al. Human NK cells of mice with reconstituted human immune system components require preactivation to acquire functional competence. Blood 116, 4158–4167 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Manz, M.G. Human-hemato-lymphoid-system mice: opportunities and challenges. Immunity 26, 537–541 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Willinger, T., Rongvaux, A., Strowig, T., Manz, M.G. & Flavell, R.A. Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol. 32, 321–327 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Drake, A.C., Chen, Q. & Chen, J. Engineering humanized mice for improved hematopoietic reconstitution. Cell. Mol. Immunol. 9, 215–224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, Q., Khoury, M. & Chen, J. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc. Natl. Acad. Sci. USA 106, 21783–21788 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nicolini, F.E., Cashman, J.D., Hogge, D.E., Humphries, R.K. & Eaves, C.J. NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia 18, 341–347 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Brehm, M.A. et al. Engraftment of human HSCs in nonirradiated newborn NOD-scid IL2rgamma null mice is enhanced by transgenic expression of membrane-bound human SCF. Blood 119, 2778–2788 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ito, R. et al. Establishment of a human allergy model using human IL-3/GM-CSF-transgenic NOG mice. J. Immunol. 191, 2890–2899 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Rongvaux, A. et al. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc. Natl. Acad. Sci. USA 108, 2378–2383 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Willinger, T. et al. Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proc. Natl. Acad. Sci. USA 108, 2390–2395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rathinam, C. et al. Efficient differentiation and function of human macrophages in humanized CSF-1 mice. Blood 118, 3119–3128 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Auffray, C., Sieweke, M.H. & Geissmann, F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Chow, A., Brown, B.D. & Merad, M. Studying the mononuclear phagocyte system in the molecular age. Nat. Rev. Immunol. 11, 788–798 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Allavena, P. & Mantovani, A. Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin. Exp. Immunol. 167, 195–205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qian, B.Z. & Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coussens, L.M., Zitvogel, L. & Palucka, A.K. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339, 286–291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nelson, C.M. & Bissell, M.J. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 22, 287–309 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bingle, L., Brown, N.J. & Lewis, C.E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 196, 254–265 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Traggiai, E. et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304, 104–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Strowig, T. et al. Transgenic expression of human signal regulatory protein alpha in Rag2−/−gamma(c)−/− mice improves engraftment of human hematopoietic cells in humanized mice. Proc. Natl. Acad. Sci. USA 108, 13218–13223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takenaka, K. et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat. Immunol. 8, 1313–1323 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Brehm, M.A. et al. Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rgamma(null) mutation. Clin. Immunol. 135, 84–98 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Legrand, N. et al. Functional CD47/signal regulatory protein alpha (SIRP(alpha)) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc. Natl. Acad. Sci. USA 108, 13224–13229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cros, J. et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33, 375–386 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma, A., Koka, R. & Burkett, P. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu. Rev. Immunol. 24, 657–679 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Soderquest, K. et al. Monocytes control natural killer cell differentiation to effector phenotypes. Blood 117, 4511–4518 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Raulet, D.H. Missing self recognition and self tolerance of natural killer (NK) cells. Semin. Immunol. 18, 145–150 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nat. Immunol. 9, 503–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Lang, J. et al. Studies of lymphocyte reconstitution in a humanized mouse model reveal a requirement of T cells for human B cell maturation. J. Immunol. 190, 2090–2101 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Valmori, D. et al. Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues. J. Immunol. 160, 1750–1758 (1998).

    CAS  PubMed  Google Scholar 

  39. Kandalaft, L.E., Motz, G.T., Busch, J. & Coukos, G. Angiogenesis and the tumor vasculature as antitumor immune modulators: the role of vascular endothelial growth factor and endothelin. Curr. Top. Microbiol. Immunol. 344, 129–148 (2011).

    CAS  PubMed  Google Scholar 

  40. Motz, G.T. & Coukos, G. Deciphering and reversing tumor immune suppression. Immunity 39, 61–73 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thanopoulou, E. et al. Engraftment of NOD/SCID-beta2 microglobulin null mice with multilineage neoplastic cells from patients with myelodysplastic syndrome. Blood 103, 4285–4293 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, X. et al. Spleens of myelofibrosis patients contain malignant hematopoietic stem cells. J. Clin. Invest. 122, 3888–3899 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wong, K.L. et al. The three human monocyte subsets: implications for health and disease. Immunol. Res. 53, 41–57 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol. 12, 352–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Martinez, F.O. et al. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood 121, e57–e69 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Jost, S. & Altfeld, M. Control of human viral infections by natural killer cells. Annu. Rev. Immunol. 31, 163–194 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Lan, P., Tonomura, N., Shimizu, A., Wang, S. & Yang, Y.G. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 108, 487–492 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Melkus, M.W. et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat. Med. 12, 1316–1322 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Van Rooijen, N. & Sanders, A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J. Immunol. Methods 174, 83–93 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Yancopoulos, D. Valenzuela, A. Murphy and W. Auerbach at Regeneron Pharmaceuticals who generated, in collaboration with our groups, the individual knock-in alleles combined in MISTRG, J. Alderman for managerial support, A.M. Franco, P. Ranney, C. Weibel, S. Patel and M. Santhanakrishnan for technical assistance, G. Lyon for cell sorting and C. Lieber for manuscript submission. This work was supported by the Bill and Melinda Gates Foundation and US National Institutes of Health CA156689 (to R.A.F. and M.G.M.), CA129350, CA84512, CA140602 (to A.K.P.); the University of Zurich Clinical Research Program (to M.G.M.); the Juvenile Diabetes Research Foundation and the Connecticut Stem Cell Research Grants Program (to R.A.F.); the Baylor Health Care System Foundation (to A.K.P.); and an Institutional Research Grant 58-012-54 from the American Cancer Society (to S.H.). T.S. was supported by the Leukemia and Lymphoma Society. The Me275 cell line was established at the Ludwig Cancer Institute in Lausanne.

Author information

Authors and Affiliations

Authors

Contributions

A.R., T.W. and J.M. designed and performed experiments and analyzed result. T.S., S.V.G., L.L.T., Y.S. and F.M. performed experiments. S.H. provided reagents. A.K.P. designed experiments and analyzed results. M.G.M. and R.A.F. conceived the project and supervised its participants and interpreted its results. A.R., T.W., A.K.P., M.G.M. and R.A.F. wrote the manuscript.

Corresponding authors

Correspondence to Markus G Manz or Richard A Flavell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Table 1 (PDF 14178 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rongvaux, A., Willinger, T., Martinek, J. et al. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 32, 364–372 (2014). https://doi.org/10.1038/nbt.2858

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2858

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer