Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Angiogenesis in life, disease and medicine

Abstract

The growth of blood vessels (a process known as angiogenesis) is essential for organ growth and repair. An imbalance in this process contributes to numerous malignant, inflammatory, ischaemic, infectious and immune disorders. Recently, the first anti-angiogenic agents have been approved for the treatment of cancer and blindness. Angiogenesis research will probably change the face of medicine in the next decades, with more than 500 million people worldwide predicted to benefit from pro- or anti-angiogenesis treatments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: History and formation of blood and lymph vessels.

Similar content being viewed by others

References

  1. Ny, A. et al. A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nature Med. 11, 998–1004 (2005).

    Article  CAS  Google Scholar 

  2. Carmeliet, P. Angiogenesis in health and disease. Nature Med. 9, 653–660 (2003).

    Article  CAS  Google Scholar 

  3. Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005).

    Article  ADS  CAS  Google Scholar 

  4. Lambrechts, D., Storkebaum, E. & Carmeliet, P. VEGF: necessary to prevent motoneuron degeneration, sufficient to treat ALS? Trends Mol. Med. 10, 275–282 (2004).

    Article  CAS  Google Scholar 

  5. Luttun, A., Autiero, M., Tjwa, M. & Carmeliet, P. Genetic dissection of tumor angiogenesis: are PlGF and VEGFR-1 novel anti-cancer targets? Biochim. Biophys. Acta 1654, 79–94 (2004).

    CAS  PubMed  Google Scholar 

  6. Simons, M. Angiogenesis: where do we stand now? Circulation 111, 1556–1566 (2005).

    Article  Google Scholar 

  7. Jain, R. K., Duda, D. G., Clark, J. W. & Loeffler, J. S. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nature Clin. Pract. Oncol. (in the press).

  8. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    Article  ADS  CAS  Google Scholar 

  9. Kerbel, R. S. & Kamen, B. A. The anti-angiogenic basis of metronomic chemotherapy. Nature Rev. Cancer 4, 423–436 (2004).

    Article  CAS  Google Scholar 

  10. Ostman, A. PDGF receptors—mediators of autocrine tumor growth and regulators of tumor vasculature and stroma. Cytokine Growth Factor Rev. 15, 275–286 (2004).

    Article  Google Scholar 

  11. Song, S., Ewald, A. J., Stallcup, W., Werb, Z. & Bergers, G. PDGFRβ+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nature Cell Biol. 7, 870–879 (2005).

    Article  CAS  Google Scholar 

  12. Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest. 111, 1287–1295 (2003).

    Article  CAS  Google Scholar 

  13. Heldin, C. H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure — an obstacle in cancer therapy. Nature Rev. Cancer 4, 806–813 (2004).

    Article  CAS  Google Scholar 

  14. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  Google Scholar 

  15. Buttery, R. C., Rintoul, R. C. & Sethi, T. Small cell lung cancer: the importance of the extracellular matrix. Int. J. Biochem. Cell Biol. 36, 1154–1160 (2004).

    Article  CAS  Google Scholar 

  16. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  ADS  CAS  Google Scholar 

  17. De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226(2005).

    Article  CAS  Google Scholar 

  18. Takakura, N. et al. A role for hematopoietic stem cells in promoting angiogenesis. Cell 102, 199–209 (2000).

    Article  CAS  Google Scholar 

  19. Rafii, S. & Lyden, D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature Med. 9, 702–712 (2003).

    Article  CAS  Google Scholar 

  20. Grunewald, M. et al. VEGF-induced adult neovascularization depends on SDF-1-mediated retention of bone marrow derived accessory cells. Cell (in the press).

  21. Kaplan, R. N. et al. VEGFR1-positive hematopoietic bone marrow progenitors initiate the premestatic niche. Nature 438, 820–827 (2005).

    Article  ADS  CAS  Google Scholar 

  22. Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Rev. Cancer 5, 263–274 (2005).

    Article  CAS  Google Scholar 

  23. Izumi, Y., Xu, L., di Tomaso, E., Fukumura, D. & Jain, R. K. Tumour biology: Herceptin acts as an anti-angiogenic cocktail. Nature 416, 279–280 (2002).

    Article  ADS  CAS  Google Scholar 

  24. Hirakawa, S. et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J. Exp. Med. 201, 1089–1099 (2005).

    Article  CAS  Google Scholar 

  25. Fletcher, J. A. Role of KIT and platelet-derived growth factor receptors as oncoproteins. Semin. Oncol. 31, 4–11 (2004).

    Article  CAS  Google Scholar 

  26. Gilbert, S. F. Developmental Biology, 6th edn (Swarthmore College, Sinauer Assoc., Sunderland, MA, 2000).

    Google Scholar 

  27. Hoyer, M. Untersuchungen ueber das Lymphgefaessystem der Froschlarven. Bull. Acad. Cracov. Teill II, 451–464 (1905).

    Google Scholar 

Download references

Acknowledgements

The author regrets that, owing to space limitations, he has been unable to refer to all of the primary literature and had to rely instead, in many instances, on reviews. P.C. is supported by grants from FWO, the European Union and the Concerted Research Activities of Belgium.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare competing financial interests: Peter Carmeliet declares to be an inventor on intellectual property rights related to some anti-angiogenic agents of the VEGF family.

Additional information

Author information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005). https://doi.org/10.1038/nature04478

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04478

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing