Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transplanted bone marrow regenerates liver by cell fusion

Abstract

Results from several experimental systems suggest that cells from one tissue type can form other tissue types after transplantation. This could be due to the presence of multipotential or several types of adult stem cells in donor tissues, or alternatively, to fusion of donor and recipient cells. In a model of tyrosinaemia type I, mice with mutations in the fumarylacetoacetate hydrolase gene (Fah-/-) regain normal liver function after transplantation of Fah+/+ bone marrow cells, and form regenerating liver nodules with normal histology that express Fah1. Here we show that these hepatic nodules contain more mutant than wild-type Fah alleles, and that their hepatocytes express both donor and host genes, consistent with polyploid genome formation by fusion of host and donor cells. Using bone marrow cells marked with integrated foamy virus vectors that express green fluorescent protein, we identify common proviral junctions in hepatic nodules and haematopoietic cells. We also show that the haematopoietic donor genome adopts a more hepatocyte-specific expression profile after cell fusion, as the wild-type Fah gene was activated and the pan-haematopoietic CD45 marker was no longer expressed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional Fah+ nodules repopulate the livers of Fah-/- mice after wild-type bone marrow transplantation.
Figure 2: Donor DNA levels in liver nodules.
Figure 3: Expression of donor and host genes in nodule hepatocytes.
Figure 4: Regenerating liver nodules in a Fah-/- mouse after a secondary bone marrow transplant with wild-type cells transduced by a foamy virus GFP vector.
Figure 5: Reprogramming of haematopoietic donor genomes at two loci.

Similar content being viewed by others

References

  1. Lagasse, E. et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Med. 6, 1229–1234 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. Grompe, M. et al. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev. 7, 2298–2307 (1993)

    Article  CAS  PubMed  Google Scholar 

  3. Epstein, C. J. & Gatens, E. A. Nuclear ploidy in mammalian parenchymal liver cells. Nature 214, 1050–1051 (1967)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Bohm, N. & Noltemeyer, N. Development of binuclearity and DNA-polyploidization in the growing mouse liver. Histochemistry 72, 55–61 (1981)

    Article  CAS  PubMed  Google Scholar 

  5. Arias, I. M. (eds) The Liver (Raven, New York, 1994)

  6. Zakim, D. & Boyer, T. D. (eds) Hepatology (W. B. Saunders Company, Philadelphia, Pennsylvania, 1990)

  7. Gale, R. P., Sparkes, R. S. & Golde, D. W. Bone marrow origin of hepatic macrophages (Kupffer cells) in humans. Science 201, 937–938 (1978)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Crofton, R. W., Diesselhoff-den Dulk, M. M. & van Furth, R. The origin, kinetics, and characteristics of the Kupffer cells in the normal steady state. J. Exp. Med. 148, 1–17 (1978)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Paradis, K., Sharp, H. L., Vallera, D. A. & Blazar, B. R. Kupffer cell engraftment across the major histocompatibility barrier in mice: bone marrow origin, class II antigen expression, and antigen-presenting capacity. J. Pediatr. Gastroenterol. Nutr. 11, 525–533 (1990)

    Article  CAS  PubMed  Google Scholar 

  10. Weglarz, T. C., Degen, J. L. & Sandgren, E. P. Hepatocyte transplantation into diseased mouse liver. Kinetics of parenchymal repopulation and identification of the proliferative capacity of tetraploid and octaploid hepatocytes. Am. J. Pathol. 157, 1963–1974 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vassilopoulos, G., Trobridge, G., Josephson, N. C. & Russell, D. W. Gene transfer into murine hematopoietic stem cells with helper-free foamy virus vectors. Blood 98, 604–609 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Vignery, A. Osteoclasts and giant cells: macrophage-macrophage fusion mechanism. Int. J. Exp. Pathol. 81, 291–304 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mintz, B. & Baker, W. W. Normal mammalian muscle differentiation and gene control of isocitrate dehydrogenase synthesis. Proc. Natl Acad. Sci. USA 58, 592–598 (1967)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goldenberg, D. M., Bhan, R. D. & Pavia, R. A. In vivo human-hamster somatic cell fusion indicated by glucose 6-phosphate dehydrogenase and lactate dehydrogenase profiles. Cancer Res. 31, 1148–1152 (1971)

    CAS  PubMed  Google Scholar 

  15. Wiener, F., Fenyo, E. M., Klein, G. & Harris, H. Fusion of tumour cells with host cells. Nat. New Biol. 238, 155–159 (1972)

    Article  CAS  PubMed  Google Scholar 

  16. Kerbel, R. S., Lagarde, A. E., Dennis, J. W. & Donaghue, T. P. Spontaneous fusion in vivo between normal host and tumour cells: possible contribution to tumour progression and metastasis studied with a lectin-resistant mutant tumour. Mol. Cell Biol. 3, 523–538 (1983)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wiener, F., Fenyo, E. M. & Klein, G. Tumor-host cell hybrids in radiochimeras. Proc. Natl Acad. Sci. USA 71, 148–152 (1974)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Terada, N. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Ying, Q. L., Nichols, J., Evans, E. P. & Smith, A. G. Changing potency by spontaneous fusion. Nature 416, 545–548 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature (this issue)

  21. Parwaresch, M. R., Kreipe, H. & Radzun, H. J. Human macrophage hybrid forming spontaneous giant cells. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 51, 89–96 (1986)

    Article  CAS  PubMed  Google Scholar 

  22. Falzoni, S. et al. The purinergic P2Z receptor of human macrophage cells. Characterization and possible physiological role. J. Clin. Invest. 95, 1207–1216 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grompe, M. et al. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nature Genet. 10, 453–460 (1995)

    Article  CAS  PubMed  Google Scholar 

  24. Bishop, C. E., Boursot, P., Baron, B., Bonhomme, F. & Hatat, D. Most classical Mus musculus domesticus laboratory mouse strains carry a Mus musculus musculus Y chromosome. Nature 315, 70–72 (1985)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Grompe, M. & al-Dhalimy, M. Nucleotide sequence of a cDNA encoding murine fumarylacetoacetate hydrolase. Biochem. Med. Metab. Biol. 48, 26–31 (1992)

    Article  CAS  PubMed  Google Scholar 

  26. Josephson, N. C. et al. Transduction of human NOD/SCID-repopulating cells with both lymphoid and myeloid potential by foamy virus vectors. Proc. Natl Acad. Sci. USA 99, 8295–8300 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Grompe for Fah-/- mice, anti-Fah antibodies and advice; T. Papayannopoulou and E. Skarpidi for review of the manuscript; and C. Xu, Y. Jiang and R. Newton for technical assistance. This work was supported by grants from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Russell.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassilopoulos, G., Wang, PR. & Russell, D. Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901–904 (2003). https://doi.org/10.1038/nature01539

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01539

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing