Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A critical appraisal of open- and closed-chest models of experimental myocardial ischemia

Abstract

Myocardial ischemia is one of the most extensively studied topics in modern cardiovascular research. Early investigators first reported experimental myocardial ischemia (EMI) in 1862. The open-chest (surgical) approach is a well-developed model of EMI that enables researchers to directly access and observe the heart. With this approach, EMI is generally induced by surgical ligation of a coronary artery. A drawback of the open-chest model is the need for major surgery, which can result in local and systemic side effects. Alternative closed-chest models of EMI have been developed; most of these models involve endovascular catheterization with coronary artery embolization or thrombosis. Closed-chest techniques eliminate the need for invasive surgery, and the resultant model is more physiologically similar to clinical myocardial ischemia than is EMI produced by artery ligation. The authors present a review of open- and closed-chest models of EMI and discuss the advantages and disadvantages of each approach.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Minimally invasive closed-chest EMI in the rabbit.

Similar content being viewed by others

References

  1. Kloner, R.A. & Braunwald, E . Observations on experimental myocardial ischaemia. Cardiovasc. Res. 14, 371–395 (1980).

    CAS  PubMed  Google Scholar 

  2. Verdouw, P.D., van den Doel, M.A., de Zeeuw, S. & Duncker, D.J. Animal models in the study of myocardial ischaemia and ischaemic syndromes. Cardiovasc. Res. 39, 121–135 (1998).

    CAS  PubMed  Google Scholar 

  3. Panum, P.L. Experimentelle Beitrage zur Lehre von der Embolie. Virchows Archiv A 25, 308 (1862).

    Google Scholar 

  4. Samuelson, B. Uber den Einfluss der Coronar-Arterien-Verschliessung auf die Herzaktion. Zeitschr. F. Klin. Medl. 2, 12 (1881).

    Google Scholar 

  5. Fenoglio, I. & Drogoul, G. Observations sur l'occlusion des coronaires cardiaques. Arch. Ital. Biol. 9, 49 (1888).

    Google Scholar 

  6. Lohman, A. Uber die Funktion der Bruckenfasern die an Stelle der grossen Venen die Fuhrung der Herztatigkeit beim Saugetiere zu ubernehmen. Arch. f. d. ges. Physiol. 123, 628 (1908).

    Google Scholar 

  7. Aixala, R. Las derivaciones toraxicas vectores. Rev. Cubana Cardiol. 6, 5 (1945).

    Google Scholar 

  8. Miller, J.L. & Matthews, S.A. Effects on the heart of experimental obstruction of the left coronary artery. Arch. Int. Med. 3, 476 (1909).

    Google Scholar 

  9. Smith, F.M. The ligation of coronary arteries with electrocardiographic study. Arch. Int. Med. 22, 8 (1918).

    Google Scholar 

  10. Wood, F.C. & Wolferth, C.C. Experimental coronary occlusion. Arch. Int. Med. 51, 771 (1933).

    Google Scholar 

  11. Fowler, W.M., Rathe, H.W. & Smith, F.M. The electrocardiographic changes following the ligation of the small branches of the coronary arteries. Am. Heart J. 8, 370 (1933).

    Google Scholar 

  12. Hoff, H.E. & Nahum, L.H. The electrocardiographic localization of myocardial infarcts by injury currents and ventricular extrasystoles. Am. J. Physiol. 143, 723 (1945).

    Google Scholar 

  13. Landis, E.M., Brown, E., Fauteux, M. & Wise, C. Central venous pressure in relation to cardiac “competence”, blood volume and exercise. J. Clin. Invest. 25, 237 (1946).

    PubMed  PubMed Central  Google Scholar 

  14. Wilson, F.N., Hill, I.G. & Johnston, F.D. The form of the electrocardiogram in experimental myocardial infarction. I. Septal infarcts and the origin of the preliminary deflections of the canine levocardiogram. Am. Heart J. 9, 596 (1934).

    Google Scholar 

  15. Hermman, G. & Desherd, G. Creatine mobilization in myocardial damage. Proc. Soc. Exp. Biol. Med. 32, 477 (1934).

    Google Scholar 

  16. Roos, A. & Smith, J.R. Production of experimental heart failure in dogs with intact circulation. Am. J. Physiol. 153, 558 (1948).

    CAS  PubMed  Google Scholar 

  17. Bellet, S. & Johnston, C.G. The effect of coronary occlusion upon the initial phase of the ventricular complex in precordial leads. J. Clin. Invest. 13, 725 (1934).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Crawford, J.H., Roberys, G.H., Abramson, D.I. & Cardwell, J.C. Localization of experimental myocardial lesions by the electrocardiogram. Am. Heart J. 7, 627 (1932).

    Google Scholar 

  19. Hoff, H.E. & Nahum, L.H. Comparison of the electrocardiographic changes produced by heating and cooling epicardial and endocardial surfaces of the dog ventricle. Am. J. Physiol. 153, 176 (1948).

    CAS  PubMed  Google Scholar 

  20. Taylor, C.B., Davis, C.B., Vawter, G.F. & Hass, G.M. Controlled myocardial injury produced by a hypothermal method. Circulation 3, 239–253 (1951).

    CAS  PubMed  Google Scholar 

  21. Haney, H.F., Borman, M.C. & Milak, W.J. The relation between position of experimental myocardial lesions in the dig and changes in the R-S-T segment of the electrocardiogram. Am. J. Physiol. 106, 64 (1933).

    Google Scholar 

  22. Schwarz, E.R. et al. Infarct size reduction by ischemic preconditioning is a monophasic, short-lived phenomenon in anesthetized pigs. J. Cardiovasc. Pharmacol. Ther. 3, 63–70 (1998).

    CAS  PubMed  Google Scholar 

  23. Blom, A.S. et al. Cardiac support device modifies left ventricular geometry and myocardial structure after myocardial infarction. Circulation 112, 1274–1283 (2005).

    PubMed  Google Scholar 

  24. Wang, S., Dusting, G.J., May, C.N. & Woodman, O.L. 3′,4′-Dihydroxyflavonol reduces infarct size and injury associated with myocardial ischaemia and reperfusion in sheep. Br. J. Pharmacol. 142, 443–452 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Senderoff, E., Warner, R.R. & Baronofsky, I.D. Blood serotonin levels in dogs with acute myocardial infarction produced by coronary ligation. J. Thorac. Cardiovasc. Surg. 44, 78–83 (1962).

    CAS  PubMed  Google Scholar 

  26. Schaper, W., Remijsen, P. & Xhonneux, R. The size of myocardial infarction after experimental coronary artery ligation. Z. Kreislaufforsch. 58, 904–909 (1969).

    CAS  PubMed  Google Scholar 

  27. Reimer, K.A., Rasmussen, M.M. & Jennings, R.B. Reduction by propranolol of myocardial necrosis following temporary coronary artery occlusion in dogs. Circ. Res. 33, 353–363 (1973).

    CAS  PubMed  Google Scholar 

  28. Kawasuji, M. et al. Therapeutic angiogenesis with intramyocardial administration of basic fibroblast growth factor. Ann. Thorac. Surg. 69, 1155–1161 (2000).

    CAS  PubMed  Google Scholar 

  29. Fujita, M. et al. A new rabbit model of myocardial infarction without endotracheal intubation. J. Surg. Res. 116, 124–128 (2004).

    PubMed  Google Scholar 

  30. Hasegawa, T., Kimura, A., Miyataka, M., Inagaki, M. & Ishikawa, K. Basic fibroblast growth factor increases regional myocardial blood flow and salvages myocardium in the infarct border zone in a rabbit model of acute myocardial infarction. Angiology 50, 487–495 (1999).

    CAS  PubMed  Google Scholar 

  31. Li, D.Y., Zhao, K., Zhou, J.F., Chen, P. & Li, W. Changes of expressions of VEGF, bFGF, and angiogenesis, and effect of benazepril, bFGF on angiogenesis in acute myocardial infarction model of the rabbits. Biomed. Environ. Sci. 17, 442–451 (2004).

    PubMed  Google Scholar 

  32. Samsamshariat, S.A., Samsamshariat, Z.A. & Movahed, M.R. A novel method for safe and accurate left anterior descending coronary artery ligation for research in rats. Cardiovasc. Revasc. Med. 6, 121–123 (2005).

    PubMed  Google Scholar 

  33. Shyu, K.G. et al. Intramyocardial injection of naked DNA encoding HIF-1alpha/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc. Res. 54, 576–583 (2002).

    CAS  PubMed  Google Scholar 

  34. Schwarz, E.R. et al. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat—angiogenesis and angioma formation. J. Am. Coll. Cardiol. 35, 1323–1330 (2000).

    CAS  PubMed  Google Scholar 

  35. Operschall, C., Falivene, L., Clozel, J.P. & Roux, S. A new model of chronic cardiac ischemia in rabbits. J. Appl. Physiol. 88, 1438–1445 (2000).

    CAS  PubMed  Google Scholar 

  36. Kawamoto, A. et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107, 461–468 (2003).

    PubMed  Google Scholar 

  37. Schaper, W. The Collateral Circulation of the Heart (North Holland Publishing Company, Amsterdam, 1971).

    Google Scholar 

  38. Litvak, J., Siderides, L.E. & Vineberg, A.M. The experimental production of coronary artery insufficiency and occlusion. Am. Heart J. 53, 505–518 (1957).

    CAS  PubMed  Google Scholar 

  39. Heilmann, C.A. et al. Gene therapy in cardiac surgery: intramyocardial injection of naked plasmid DNA for chronic myocardial ischemia. Eur. J. Cardiothorac. Surg. 24, 785–793 (2003).

    PubMed  Google Scholar 

  40. Gallagher, K.P., Folts, J.D., Shebuski, R.J., Rankin, J.H. & Rowe, G.G. Subepicardial vasolidator reserve in the presence of critical coronary stenosis in dogs. Am. J. Cardiol. 46, 67–73 (1980).

    CAS  PubMed  Google Scholar 

  41. Folts, J.D., Crowell, E.B. & Rowe, G.G. Platelet aggregation in partially obstructed vessels and its elimination with aspirin. Circulation 54, 365–370 (1976).

    CAS  PubMed  Google Scholar 

  42. Fallavollita, J.A., Perry, B.J. & Canty, J.M. 18F-2-deoxyglucose deposition and regional flow in pigs with chronically dysfunctional myocardium: evidence for transmural variations in chronic hibernating myocardium. Circulation 95, 1900–1999 (1997).

    CAS  PubMed  Google Scholar 

  43. McFalls, E.O. et al. Regional glucose uptake within hypoperfused swine myocardium as measured by positron emission tomography. Am. J. Physiol. 272, H343–H349 (1997).

    CAS  PubMed  Google Scholar 

  44. McFalls, E.O. et al. Mitochondrial adaptations within chronically ischemic swine myocardium. J. Mol. Cell. Cardiol. 41, 980–988 (2006).

    CAS  PubMed  Google Scholar 

  45. Heilmann, C. et al. Comparison of protein with DNA therapy for chronic myocardial ischemia using fibroblast growth factor-2. Eur. J. Cardiothorac. Surg. 22, 957–964 (2002).

    PubMed  Google Scholar 

  46. Chen, C. et al. Functional and structural alterations with 24-hour myocardial hibernation and recovery after reperfusion. A pig model of myocardial hibernation. Circulation 94, 507–516 (1996).

    CAS  PubMed  Google Scholar 

  47. Aouam, K. et al. Preconditioning of salvaged myocardium in conscious rabbits with postinfarction dysfunction. Am. J. Physiol. 288, 2763–2769 (2005).

    Google Scholar 

  48. Cohen, M.V., Yang, X.M., Liu, Y., Snell, K.S. & Downey, J.M. A new animal model of controlled coronary artery occlusion in conscious rabbits. Cardiovasc. Res. 28, 61–65 (1994).

    CAS  PubMed  Google Scholar 

  49. Debley, V.G. Miniature hydraulic occluder for zero blood flow determinations. J. Appl. Physiol. 31, 138–139 (1971).

    CAS  PubMed  Google Scholar 

  50. Vatner, S.F. Correlation between acute reduction in myocardial blood flow and function in conscious dogs. Circ. Res. 47, 201–207 (1980).

    CAS  PubMed  Google Scholar 

  51. de Jong, J.W., Verdouw, P.D. & Remme, W.J. Myocardial nucleoside and carbohydrate metabolism and hemodynamics during partial occlusion and reperfusion of pig coronary artery. J. Mol. Cell. Cardiol. 9, 297–312 (1977).

    CAS  PubMed  Google Scholar 

  52. Elzinga, W.E. & Skinner, D.B. Hemodynamic characteristics of critical stenosis in canine coronary arteries. J. Thorac. Cardiovasc. Surg. 69, 217–222 (1975).

    CAS  PubMed  Google Scholar 

  53. Hosko, M.J., Gross, G.J. & Warltier, D.C. Technique for precise, graded arterial stenosis and occlusion. Bas. Res. Cardiol. 72, 651–659 (1977).

    CAS  Google Scholar 

  54. van der Meer, J.J. & Reneman, R.S. An improved technique to induce a standardized functional stenosis of a coronary artery. Eur. Surg. Res. 4, 407–418 (1972).

    Google Scholar 

  55. Bristow, J.D., McFalls, E.O., Anselone, C.G. & Pantely, G.A. Coronary vasodilator reserve persists despite tachycardia and myocardial ischemia. Am. J. Physiol. 253, H422–H431 (1987).

    CAS  PubMed  Google Scholar 

  56. Folts, J. An in vivo model of experimental arterial stenosis, intimal damage, and periodic thrombosis. Circulation 83, IV3–IV14 (1991).

    CAS  PubMed  Google Scholar 

  57. Ciulla, M.M. et al. Left ventricular remodeling after experimental myocardial cryoinjury in rats. J. Surg. Res. 116, 91–97 (2004).

    PubMed  Google Scholar 

  58. Roell, W. et al. Cellular cardiomyoplasty in a transgenic mouse model. Transplantation 73, 462–465 (2002).

    PubMed  Google Scholar 

  59. Roell, W. et al. Cellular cardiomyoplasty improves survival after myocardial injury. Circulation 105, 2435–2441 (2002).

    PubMed  Google Scholar 

  60. van den Bos, E.J., Mees, B.M., de Waard, M.C., de Crom, R. & Duncker, D.J. A novel model of cryoinjury-induced myocardial infarction in the mouse: a comparison with coronary artery ligation. Am. J. Physiol. 289, 1291–1300 (2005).

    Google Scholar 

  61. Cook, J.J. et al. Nonpeptide glycoprotein IIb/IIIa inhibitors: 14: oral antithrombotic efficacy of L-738,167 in a conscious canine model of coronary artery electrolytic injury. Circulation 96, 949–958 (1997).

    CAS  PubMed  Google Scholar 

  62. Romson, J.L., Haack, D.W. & Lucchesi, B.R. Electrical induction of coronary artery thrombosis in the ambulatory canine: a model for in vivo evaluation of anti-thrombotic agents. Thromb. Res. 17, 841–853 (1980).

    CAS  PubMed  Google Scholar 

  63. van der Giessen, W.J. et al. A new model for coronary thrombosis in the pig: preliminary results with thrombolysis. Eur. Heart J. 4 (Suppl C), 69–76 (1983).

    PubMed  Google Scholar 

  64. Snoeckx, L.H., Bruyneel, K., de Clerck, F., Verheyen, A. & Reneman, R.S. Electrically induced coronary artery thrombosis in closed chest anaesthetized dogs. Evaluation of the method. Basic Res. Cardiol. 73, 241–255 (1978).

    CAS  PubMed  Google Scholar 

  65. Tanaka, E. et al. Amelioration of microvascular myocardial ischemia by gene transfer of vascular endothelial growth factor in rabbits. J. Thorac. Cardiovasc. Surg. 120, 720–728 (2000).

    CAS  PubMed  Google Scholar 

  66. Ban, K. et al. Development of peripherally distributed myocardial ischemia in chronic canine model. J. Mol. Cell. Cardiol. 30, 22 (1998).

    Google Scholar 

  67. Dörge, H. et al. Perfusion-contraction mismatch with coronary microvascular obstruction: role of inflammation. Am. J. Physiol. Heart Circ. Physiol. 279, 2587–2592 (2000).

    Google Scholar 

  68. Heusch, G., Schulz, R., Baumgart, D., Haude, M. & Erbel, R. Coronary microembolization. Prog. Cardiovasc. Dis. 44, 217–230 (2001).

    CAS  PubMed  Google Scholar 

  69. Chilian, W.M. et al. Microvascular occlusions promote coronary collateral growth. Am. J. Physiol. 258, H1103–H1111 (1990).

    CAS  PubMed  Google Scholar 

  70. Landau, C., Jacobs, A.K. & Haudenschild, C.C. Intrapericardial basic fibroblast growth factor induces myocardial angiogenesis in a rabbit model of chronic ischemia. Am. Heart J. 129, 924–931 (1995).

    CAS  PubMed  Google Scholar 

  71. Tan, L.B., Jalil, J.E., Pick, R., Janicki, J.S. & Weber, K.T. Cardiac myocyte necrosis induced by angiotensin II. Circ. Res. 69, 1185–1195 (1991).

    CAS  PubMed  Google Scholar 

  72. Ling, E.T. & deBold, A.J. An improved method for the production of experimental congestive heart failure in the guinea-pig. Lab. Anim. 10, 285–289 (1976).

    CAS  PubMed  Google Scholar 

  73. Kingsbury, M.P. et al. Investigation of distal aortic compliance and vasodilator responsiveness in heart failure due to proximal aortic stenosis in the guinea pig. Clin. Sci. (Lond.) 96, 241–251 (1999).

    CAS  Google Scholar 

  74. McGoldrick, R.B., Kingsbury, M.P., Turner, M.A., Sheridan, D.J. & Hughes, A.D. Left ventricular hypertrophy induced by aortic banding impairs relaxation of isolated coronary arteries. Clin. Sci. (Lond.) 113, 473–478 (2007).

    CAS  Google Scholar 

  75. Yan, X. et al. Pressure overload-induced hypertrophy in transgenic mice selectively overexpressing AT2 receptors in ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 294, H1274–H1281 (2008).

    CAS  PubMed  Google Scholar 

  76. Juric, D., Wojciechowski, P., Das, D.K. & Netticadan, T. Prevention of concentric hypertrophy and diastolic impairment in aortic-banded rats treated with resveratrol. Am. J. Physiol. Heart. Circ. Physiol. 292, H2138–H2143 (2007).

    CAS  PubMed  Google Scholar 

  77. Gaasch, W.H. et al. Tolerance of the hypertrophic heart to ischemia. Studies in compensated and failing dog hearts with pressure overload hypertrophy. Circulation 81, 1644–1653 (1990).

    CAS  PubMed  Google Scholar 

  78. Anthonio, R.L. et al. Myocardial infarction with aortic banding. A combined rat model of heart failure. Jpn. Heart J. 38, 697–708 (1997).

    CAS  PubMed  Google Scholar 

  79. Yanagisawa-Miwa, A. et al. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 257, 1401–1403 (1992).

    CAS  PubMed  Google Scholar 

  80. Dogne, J.M. et al. Characterization of an original model of myocardial infarction provoked by coronary artery thrombosis induced by ferric chloride in pig. Thromb. Res. 116, 431–442 (2005).

    CAS  PubMed  Google Scholar 

  81. Miyahara, K., Sakamoto, H., Sakamoto, H. & Satoh, E. Myocardial infarction induced by coronary venous thrombosis—an experimental study. Jpn. Circ. J. 54, 1165–1173 (1990).

    CAS  PubMed  Google Scholar 

  82. Gold, H.K. et al. Coronary thrombolysis with recombinant human tissue-type plasminogen activator. Circulation 70, 700–707 (1984).

    CAS  PubMed  Google Scholar 

  83. Suzuki, M., Asano, H., Tanaka, H. & Usuda, S. Development and evaluation of a new canine myocardial infarction model using a closed-chest injection of thrombogenic material. Jpn. Circ. J. 63, 900–905 (1999).

    CAS  PubMed  Google Scholar 

  84. Charles, C.J., Elliott, J.M., Nicholls, M.G., Rademaker, M.T. & Richards, M. Myocardial infarction with and without reperfusion in sheep: early cardiac and neurohumoral changes. Clin. Sci. (Lond.) 98, 703–711 (2000).

    CAS  Google Scholar 

  85. Bush, L.R. & Shebuski, R.J. In vivo models of arterial thrombosis and thrombolysis. FASEB J. 4, 3087–3098 (1990).

    CAS  PubMed  Google Scholar 

  86. Joudinaud, T.M. et al. An experimental method for the per-cutaneous induction of a posterolateral infarct and functional ischemic mitral regurgitation. J. Heart Valve Dis. 14, 460–466 (2005).

    PubMed  Google Scholar 

  87. Haines, D.E., Whayne, J.G. & DiMarco, J.P. Intracoronary ethanol ablation in swine: effects of ethanol concentration on lesion formation and response to programmed ventricular stimulation. J. Cardiovasc. Electrophysiol. 5, 422–431 (1994).

    CAS  PubMed  Google Scholar 

  88. Lakkis, N. New treatment methods for patients with hypertrophic obstructive cardiomyopathy. Curr. Opin. Cardiol. 15, 172–177 (2000).

    CAS  PubMed  Google Scholar 

  89. Herr, M.D., McInerney, J.J., Copenhaver, G.L. & Morris, D.L. Coronary artery embolization in closed-chest canines using flexible radiopaque plugs. J. Appl. Physiol. 64, 2236–2239 (1988).

    CAS  PubMed  Google Scholar 

  90. Lappin, H.A., Botvinick, E.H., Parmley, W.W. & Tyberg, J.V. Myocardial infarction in closed-chest dogs: a simplified method for production. J. Appl. Physiol. 39, 831–833 (1975).

    CAS  PubMed  Google Scholar 

  91. Naslund, U., Haggmark, S., Johansson, G., Marklund, S.L. & Reiz, S. A closed-chest myocardial occlusion-reperfusion model in the pig: techniques, morbidity and mortality. Eur. Heart. J. 13, 1282–1289 (1992).

    CAS  PubMed  Google Scholar 

  92. Näslund, U., Häggmark, S., Johansson, G., Marklund, S.L. & Reiz, S. Limitation of myocardial infarct size by superoxide dismutase as an adjunct to reperfusion after different durations of coronary occlusion in the pig. Circ. Res. 66, 1294–1301 (1990).

    PubMed  Google Scholar 

  93. Eldar, M. et al. A closed-chest pig model of sustained ventricular tachycardia. Pacing Clin. Electrophysiol. 17, 1603–1609 (1994).

    CAS  PubMed  Google Scholar 

  94. Greenspon, A.J., Hsu, S.S., Borge, R., Smith, M.F. & Eldar, M. Insights into the mechanism of sustained ventricular tachycardia after myocardial infarction in a closed chest porcine model using a multielectrode “basket” catheter. J. Cardiovasc. Electrophysiol. 10, 1501–1516 (1999).

    CAS  PubMed  Google Scholar 

  95. Ikram, H. et al. An ovine model of acute myocardial infarction and chronic left ventricular dysfunction. Angiology 48, 679–688 (1997).

    CAS  PubMed  Google Scholar 

  96. Charles, C.J., Donald, R.A., Ikram, H., Prickett, T. & Richards, A.M. Arginine vasopressin V1-receptor antagonism in an ovine model of acute myocardial infarction. J. Cardiovasc. Pharmacol. 32, 777–782 (1998).

    CAS  PubMed  Google Scholar 

  97. Miura, T., Yellon, D.M., Hearse, D.J. & Downey, J.M. Determinants of infarct size during permanent occlusion of a coronary artery in the closed chest dog. J. Am. Coll. Cardiol. 9, 647–654 (1987).

    CAS  PubMed  Google Scholar 

  98. Sakamoto, S., Yokoyama, M., Kashiki, M. & Fukuzaki, H. Comparative effects of intracoronary vasodilators on restoring coronary perfusion during flow-reducing coronary stenosis in the dog. J. Am. Coll. Cardiol. 9, 119–126 (1987).

    CAS  PubMed  Google Scholar 

  99. Ichikawa, Y., Yokoyama, M., Akita, H. & Fukuzaki, H. Constriction of a large coronary artery contributes to serotonin-induced myocardial ischemia in the dog with pliable coronary stenosis. J. Am. Coll. Cardiol. 14, 449–459 (1989).

    CAS  PubMed  Google Scholar 

  100. Garner, D., Ginzton, L.E., Jagels, G. & Laks, M.M. A new technique for producing myocardial infarction using coronary artery balloon occlusion. Cardiovasc. Res. 22, 42–46 (1988).

    CAS  PubMed  Google Scholar 

  101. Farcot, J.C., Meerbaum, S., Lang, T.W., Kaplan, L. & Corday, E. Synchronized retroperfusion of coronary veins for circulatory support of jeopardized ischemic myocardium. Am. J. Cardiol. 41, 1191–1201 (1978).

    CAS  PubMed  Google Scholar 

  102. Hashimoto, K. et al. Significance of S-T segment elevations in acute myocardial ischemia. Evaluation with intracoronary electrode technique. Am. J. Cardiol. 37, 493–500 (1976).

    CAS  PubMed  Google Scholar 

  103. Corday, E. et al. Closed chest model of intracoronary occlusion for study of regional cardiac function. Am. J. Cardiol. 33, 49–59 (1974).

    CAS  PubMed  Google Scholar 

  104. Dib, N. et al. A percutaneous swine model of myocardial infarction. J. Pharmacol. Toxicol. Methods 53, 256–263 (2006).

    CAS  PubMed  Google Scholar 

  105. Van de Werf, F. et al. Coronary thrombolysis with intravenously administered human tissue-type plasminogen activator produced by recombinant DNA technology. Circulation 69, 605–610 (1984).

    CAS  PubMed  Google Scholar 

  106. Watanabe, E. et al. Cardiomyocyte transplantation in a porcine myocardial infarction model. Cell Transplant. 7, 239–246 (1998).

    CAS  PubMed  Google Scholar 

  107. Li, R.K. et al. Autologous porcine heart cell transplantation improved heart function after a myocardial infarction. J. Thorac. Cardiovasc. Surg. 119, 62–68 (2000).

    CAS  PubMed  Google Scholar 

  108. Edwards, R. et al. A model of closed chest regional myocardial infarction in the rabbit: a clinically relevant in vivo assay system of post-infarction remodelling. Basic Res. Cardiol. 97, 374–383 (2002).

    PubMed  Google Scholar 

  109. Ruocco, N.A., Most, A.S., Sasken, H., Steiner, M. & Gewirtz, H. Influence of serotonin on myocardial blood flow in the presence and absence of a coronary arterial stenosis: observations in domestic swine. Proc. Soc. Exp. Biol. Med. 187, 416–424 (1988).

    CAS  PubMed  Google Scholar 

  110. Gewirtz, H. & Most, A.S. Production of a critical coronary artery stenosis in closed chest laboratory animals: description of a new nonsurgical method based on standard cardiac catheterization techniques. Am. J. Cardiol. 47, 589 (1981).

    CAS  PubMed  Google Scholar 

  111. Li, H.H. et al. [A pig model of myocardial infarction by intracoronary embolization with gelatin sponge.]. Zhonghua Yi Xue Za Zhi 85, 599–601 (2005).

    PubMed  Google Scholar 

  112. Reffelmann, T. et al. A novel minimal-invasive model of chronic myocardial infarction in swine. Coron. Artery Dis. 15, 7–12 (2004).

    PubMed  Google Scholar 

  113. Sakakibara, Y. et al. Toward surgical angiogenesis using slow-released basic fibroblast growth factor. Eur. J. Cardiothorac. Surg. 24, 105–112 (2003).

    PubMed  Google Scholar 

  114. Mahley, R.W., Weisgraber, K.H., Innerarity, T., Brewer, H.B. & Assmann, G. Swine lipoproteins and atherosclerosis. Changes in the plasma lipoproteins and apoproteins induced by cholesterol feeding. Biochemistry 14, 2817–2823 (1975).

    CAS  PubMed  Google Scholar 

  115. Jokinen, M.P., Clarkson, T.B. & Prichard, R.W. Animal models in atherosclerosis research. Exp. Mol. Pathol. 42, 1–28 (1985).

    CAS  PubMed  Google Scholar 

  116. Vesselinovitch, D. Animals models and the study of atherosclerosis. Arch. Pathol. Lab. Med. 112, 1011–1017 (1988).

    CAS  PubMed  Google Scholar 

  117. Dyson, M.C., Alloosh, M., Vuchetich, J.P., Mokelke, E.A. & Sturek, M. Components of metabolic syndrome and coronary artery disease in female Ossabaw swine fed excess atherogenic diet. Comp. Med. 56, 35–45 (2006).

    CAS  PubMed  Google Scholar 

  118. Dixon, J.L. et al. Dyslipidemia and vascular dysfunction in diabetic pigs fed an atherogenic diet. Arterioscler. Thromb. Vasc. Biol. 19, 2981–2992 (1999).

    CAS  PubMed  Google Scholar 

  119. Schulz, R., Post, H., Vahlhaus, C. & Heusch, G. Ischemic preconditioning in pigs: a graded phenomenon: its relation to adenosine and bradykinin. Circulation 98, 1022–1029 (1998).

    CAS  PubMed  Google Scholar 

  120. Karnabatidis, D., Katsanos, K., Diamantopoulos, A., Kagadis, G.C. & Siablis, D. Transauricular arterial or venous access for cardiovascular experimental protocols in animals. J. Vasc. Interv. Radiol. 17, 1803–1811 (2006).

    PubMed  Google Scholar 

  121. Grund, F., Sommerschild, H.T., Kirkeboen, K.A. & Ilebekk, A. A new approach to normalize myocardial temperature in the open-chest pig model. J. Appl. Physiol. 84, 2190–2197 (1998).

    CAS  PubMed  Google Scholar 

  122. Duncker, D.J. et al. Effect of temperature on myocardial infarction in swine. Am. J. Physiol. 270, 1189–1199 (1996).

    Google Scholar 

  123. Hale, S.L., Dave, R.H. & Kloner, R.A. Regional hypothermia reduces myocardial necrosis even when instituted after the onset of ischemia. Basic Res. Cardiol. 92, 351–357 (1997).

    CAS  PubMed  Google Scholar 

  124. Schwartz, L.M., Verbinski, S.G., Vander Heide, R.S. & Reimer, KA. Epicardial temperature is a major predictor of myocardial infarct size in dogs. J. Mol. Cell. Cardiol. 29, 1577–1583 (1997).

    CAS  PubMed  Google Scholar 

  125. Hosenpud, J.D., Yung, N.N. & Morton, M.J. Left ventricular pressure-volume relations shift to the left after long-term loss of pericardial restraint. Circulation 68, 155–163 (1983).

    CAS  PubMed  Google Scholar 

  126. Wang, S.Y., Sheldon, R.S., Bergman, D.W. & Tyberg, J.V. Effects of pericardial constraint on left ventricular mechano-receptor activity in cats. Circulation 92, 3331–3336 (1995).

    CAS  PubMed  Google Scholar 

  127. Robotham, J.L., Stuart, R.S., Borkon, A.M., Doherty, K. & Baumgartner, W. Effects of changes in left ventricular loading and pleural pressure on mitral flow. J. Appl. Physiol. 65, 1662–1675 (1988).

    CAS  PubMed  Google Scholar 

  128. Bitkover, C.Y., Hansson, L.O., Valen, G. & Vaage, J. Effects of cardiac surgery on some clinically used inflammation markers and procalcitonin. Scand. Cardiovasc. J. 34, 307–314 (2000).

    CAS  PubMed  Google Scholar 

  129. Hendriksen, C.F. The ethics of research involving animals: a review of the Nuffield Council on Bioethics report from a three Rs perspective. Altern. Lab. Anim. 33, 659–662 (2005).

    CAS  PubMed  Google Scholar 

  130. Homans, D.C., Sublett, E., Dal, X.Z. & Bache, R.J. Persistence of regional left ventricular dysfunction after exercise-induced myocardial ischemia. J. Clin. Invest. 77, 66–73 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kumada, T. et al. Reduction of exercise-induced regional myocardial dysfunction by propranolol. Studies in a canine model of chronic coronary artery stenosis. Circ. Res. 46, 190–200 (1980).

    CAS  PubMed  Google Scholar 

  132. Cohen, M.V., Yang, X.M. & Downey, J.M. Conscious rabbits become tolerant to multiple episodes of ischemic preconditioning. Circ. Res. 74, 998–1004 (1994).

    CAS  PubMed  Google Scholar 

  133. Qiu, Y. et al. The early and late phases of ischemic preconditioning: a comparative analysis of their effects on infarct size, myocardial stunning, and arrhythmias in conscious pigs undergoing a 40-minute coronary occlusion. Circ. Res. 80, 730–742 (1997).

    CAS  PubMed  Google Scholar 

  134. Manders, W.T. & Vatner, S.F. Effects of sodium pentobarbital anesthesia, on left ventricular function and distribution of cardiac output in dogs, with particular reference to the mechanism for tachycardia. Circ. Res. 39, 512–517 (1976).

    CAS  PubMed  Google Scholar 

  135. Zimpfer, M., Manders, W.T., Barger, A.C. & Vatner, S.F. Pentobarbital alters compensatory neural and humoral mechanisms in response to hemorrhage. Am. J. Physiol. 243, H713–H721 (1982).

    CAS  PubMed  Google Scholar 

  136. Ihara, T. et al. Effects of anaesthesia and recent surgery on diastolic function. Cardiovasc. Res. 28, 325–336 (1994).

    CAS  PubMed  Google Scholar 

  137. Moelker, A.D. et al. Reduction in infarct size, but no functional improvement after bone marrow cell administration in a porcine model of reperfused myocardial infarction. Eur. Heart J. 27, 3057–3064 (2006).

    PubMed  Google Scholar 

  138. Gaasch, W.H. & Bernard, S.A. The effect of acute changes in coronary blood flow on left ventricular end-diastolic wall thickness. An echocardiographic study. Circulation 56, 593–598 (1977).

    CAS  PubMed  Google Scholar 

  139. Murry, C.E., Jennings, R.B. & Reimer, K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 75, 1124–1136 (1986).

    Google Scholar 

  140. Schott, R.J., Rohmann, S., Braun, E.R. & Schaper, W. Ischemic preconditioning reduces infarct size in swine myocardium. Circ. Res. 66, 1133–1142 (1990).

    CAS  PubMed  Google Scholar 

  141. Tumbleson, M.E. Swine in Biomedical Research (Plenum, New York, 1986).

    Google Scholar 

  142. Selye, H., Bajusz, E., Grasso, S. & Mendel, P. Simple techniques for the surgical occlusion of coronary vessels in the rats. Angiology 11, 398–407 (1960).

    CAS  PubMed  Google Scholar 

  143. Schaper, W., Jageneau, A. & Xhonneux, R. Development of collateral circulation in the pig and the dog heart. Cardiologia 51, 321–335 (1967).

    CAS  PubMed  Google Scholar 

  144. Schaper, W., Bernotat-Danielowski, S., Nienaber, C. & Schaper, J. in The Heart and Cardiovascular System (eds. Fozzard, H.A., Haber, E., Jennings, R.B. & Katz, A.M.) 1427–1464 (Raven, New York, 1992).

    Google Scholar 

  145. Harken, A.H. et al. Early ischemia after complete coronary ligation in the rabbit, dog, pig, and monkey. Am. J. Physiol. 241, H202–H210 (1981).

    CAS  PubMed  Google Scholar 

  146. Liu, Y. & Downey, J.M. Ischemic preconditioning protects against infarction in rat heart. Am. J. Physiol. 263, H1107–H1112 (1992).

    CAS  PubMed  Google Scholar 

  147. Cohen, M.V., Liu, G.S. & Downey, J.M. Preconditioning causes improved wall motion as well as smaller infarcts after transient coronary occlusion in rabbits. Circulation 84, 341–349 (1991).

    CAS  PubMed  Google Scholar 

  148. Pfeffer, J.M., Pfeffer, M.A., Fletcher, P.J. & Braunwald, E. Progressive ventricular remodeling in rat with myocardial infarction. Am. J. Physiol. 260, H1406–H1414 (1991).

    CAS  PubMed  Google Scholar 

  149. Pfeffer, J.M. & Pfeffer, M.A. Angiotensin converting enzyme inhibition and ventricular remodeling in heart failure. Am. J. Med. 84, 37–44 (1988).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstratios N. Koletsis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsos, S., Katsanos, K., Dougeni, E. et al. A critical appraisal of open- and closed-chest models of experimental myocardial ischemia. Lab Anim 38, 167–177 (2009). https://doi.org/10.1038/laban0509-167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban0509-167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing