Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The chicken chorioallantoic membrane tumor assay as model for qualitative testing of oncolytic adenoviruses

Abstract

Oncolytic adenoviruses are promising anticancer agents. To study and optimize their tumor-killing potency, genuine tumor models are required. Here we describe the use of the chicken chorioallantoic membrane (CAM) tumor model in studies on oncolytic adenoviral vectors. Suspensions of human melanoma, colorectal carcinoma and glioblastoma multiforme cell lines were grafted on the CAM of embryonated chicken eggs. All cell lines tested formed 5–10 mm size tumors, which recapitulated hallmarks of corresponding human specimens. Furthermore, melanoma tumors were injected with adenoviral vector-carrying gene encoding the fusion protein of parainfluenza virus type 5. This led to the induction of cell fusion and syncytia formation in the infected cells. At 6 days post-injection, histological and immunohistochemical analyses of tumor sections confirmed adenovirus replication and syncytia formation. These results demonstrate that the CAM model allows rapid assessment of oncolytic viruses in three-dimensional tumors. Hence, this model constitutes an easy and affordable system for preclinical characterization of viral oncolytic agents that may precede the mandatory process of animal testing. Application of this model will help reducing the use of human xenografts in mice for preclinical evaluation of oncolytic viruses and other anticancer agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Okegawa T, Pong RC, Li Y, Bergelson JM, Sagalowsky AI, Hsieh JT . The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of car protein structure. Cancer Res 2001; 61: 6592–6600.

    CAS  PubMed  Google Scholar 

  2. Kuppen PJ, van der Eb MM, Jonges LE, Hagenaars M, Hokland ME, Nannmark U et al. Tumor structure and extracellular matrix as a possible barrier for therapeutic approaches using immune cells or adenoviruses in colorectal cancer. Histochem Cell Biol 2001; 115: 67–72.

    Article  CAS  PubMed  Google Scholar 

  3. Harrison D, Sauthoff H, Heitner S, Jagirdar J, Rom WN, Hay JG . Wild-type adenovirus decreases tumor xenograft growth, but despite viral persistence complete tumor responses are rarely achieved—deletion of the viral E1b-19-kD gene increases the viral oncolytic effect. Hum Gene Ther 2001; 12: 1323–1332.

    Article  CAS  PubMed  Google Scholar 

  4. Sauthoff H, Hu J, Maca C, Goldman M, Heitner S, Yee H et al. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points. Hum Gene Ther 2003; 14: 425–433.

    Article  CAS  PubMed  Google Scholar 

  5. Worgall S, Wolff G, Falck-Pedersen E, Crystal RG . Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther 1997; 8: 37–44.

    Article  CAS  PubMed  Google Scholar 

  6. Ganesh S, Gonzalez Edick M, Idamakanti N, Abramova M, Vanroey M, Robinson M et al. Relaxin-expressing, fiber chimeric oncolytic adenovirus prolongs survival of tumor-bearing mice. Cancer Res 2007; 67: 4399–4407.

    Article  CAS  PubMed  Google Scholar 

  7. Kim J-H, Lee Y-S, Kim H, Huang J-H, Yoon AR, Yun C-O . Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J Natl Cancer Inst 2006; 98: 1482–1493.

    Article  CAS  PubMed  Google Scholar 

  8. Gros A, Martínez-Quintanilla J, Puig C, Guedan S, Molleví DG, Alemany R et al. Bioselection of a gain of function mutation that enhances adenovirus 5 release and improves its antitumoral potency. Cancer Res 2008; 68: 8928–8937.

    Article  CAS  PubMed  Google Scholar 

  9. Norrby K . In vivo models of angiogenesis. J Cell Mol Med 2006; 10: 588–612.

    Article  CAS  PubMed  Google Scholar 

  10. Hallak LK, Merchan JR, Storgard CM, Loftus JC, Russell SJ . Targeted measles virus vector displaying echistatin infects endothelial cells via alpha(v)beta3 and leads to tumor regression. Cancer Res 2005; 65: 5292–5300.

    Article  CAS  PubMed  Google Scholar 

  11. Ong HT, Trejo TR, Pham LD, Oberg AL, Russell SJ, Peng KW . Intravascularly administered RGD-displaying measles viruses bind to and infect neovessel endothelial cells in vivo. Mol Ther 2009; 17: 1012–1021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim J, Yu W, Kovalski K, Ossowski L . Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell 1998; 94: 353–362.

    Article  CAS  PubMed  Google Scholar 

  13. Lugassy C, Kleinman HK, Engbring JA, Welch DR, Harms JF, Rufner R et al. Pericyte-like location of GFP-tagged melanoma cells: ex vivo and in vivo studies of extravascular migratory metastasis. Am J Pathol 2004; 164: 1191–1198.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lugassy C, Vernon SE, Busam K, Engbring JA, Welch DR, Poulos EG et al. Angiotropism of human melanoma: studies involving in transit and other cutaneous metastases and the chicken chorioallantoic membrane: implications for extravascular melanoma invasion and metastasis. Am J Dermatopathol 2006; 28: 187–193.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zijlstra A, Mellor R, Panzarella G, Aimes RT, Hooper JD, Marchenko ND et al. A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Res 2002; 62: 7083–7092.

    CAS  PubMed  Google Scholar 

  16. Hagedorn M, Javerzat S, Gilges D, Meyre A, de Lafarge B, Eichmann A et al. Accessing key steps of human tumor progression in vivo by using an avian embryo model. Proc Natl Acad Sci USA 2005; 102: 1643–1648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taizi M, Deutsch VR, Leitner A, Ohana A, Goldstein RS . A novel and rapid in vivo system for testing therapeutics on human leukemias. Exp Hematol 2006; 34: 1698–1708.

    Article  CAS  PubMed  Google Scholar 

  18. Kobayashi T, Koshida K, Endo Y, Imao T, Uchibayashi T, Sasaki T et al. A chick embryo model for metastatic human prostate cancer. Eur Urol 1998; 34: 154–160.

    Article  CAS  PubMed  Google Scholar 

  19. Guedan S, Gros A, Cascallo M, Vile R, Mercade E, Alemany R . Syncytia formation affects the yield and cytotoxicity of an adenovirus expressing a fusogenic glycoprotein at a late stage of replication. Gene Therapy 2008; 15: 1240–1245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li H, Haviv YS, Derdeyn CA, Lam J, Coolidge C, Hunter E et al. Human immunodeficiency virus type 1-mediated syncytium formation is compatible with adenovirus replication and facilitates efficient dispersion of viral gene products and de novo-synthesized virus particles. Hum Gene Ther 2001; 12: 2155–2165.

    Article  CAS  PubMed  Google Scholar 

  21. Terrier O, Durupt F, Cartet G, Thomas L, Lina B, Rosa-Calatrava M . Engineering of a parainfluenza virus type 5 fusion protein (PIV-5 F): development of an autonomous and hyperfusogenic protein by a combinational mutagenesis approach. Virus Res 2009; 146: 115–124.

    Article  CAS  PubMed  Google Scholar 

  22. Mittereder N, March KL, Trapnell BC . Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J Virol 1996; 70: 7498–7509.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fallaux FJ, Bout A, van der Velde I, van den Wollenberg DJ, Hehir KM, Keegan J et al. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther 1998; 9: 1909–1917.

    Article  CAS  PubMed  Google Scholar 

  24. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA . Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 2010; 148: 3–15.

    Article  CAS  PubMed  Google Scholar 

  25. Damia G, D’Incalci M . Contemporary pre-clinical development of anticancer agents—what are the optimal preclinical models? Eur J Cancer 2009; 45: 2768–2781.

    Article  CAS  PubMed  Google Scholar 

  26. Morton CL, Houghton PJ . Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc 2007; 2: 247–250.

    Article  CAS  PubMed  Google Scholar 

  27. Candolfi M, Curtin JF, Nichols WS, Muhammad AG, King GD, Pluhar GE et al. Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol 2007; 85: 133–148.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lam JT, Hemminki A, Kanerva A, Lee KB, Blackwell JL, Desmond R et al. A three-dimensional assay for measurement of viral-induced oncolysis. Cancer Gene Ther 2007; 14: 421–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lopez MV, Viale DL, Cafferata EG, Bravo AI, Carbone C, Gould D et al. Tumor associated stromal cells play a critical role on the outcome of the oncolytic efficacy of conditionally replicative adenoviruses. PLoS One 2009; 4: e5119.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ahmed A, Jevremovic D, Suzuki K, Kottke T, Thompson J, Emery S et al. Intratumoral expression of a fusogenic membrane glycoprotein enhances the efficacy of replicating adenovirus therapy. Gene Therapy 2003; 10: 1663–1671.

    Article  CAS  PubMed  Google Scholar 

  31. Bateman A, Bullough F, Murphy S, Emiliusen L, Lavillette D, Cosset FL et al. Fusogenic membrane glycoproteins as a novel class of genes for the local and immune-mediated control of tumor growth. Cancer Res 2000; 60: 1492–1497.

    CAS  PubMed  Google Scholar 

  32. Lin EH, Salon C, Brambilla E, Lavillette D, Szecsi J, Cosset FL et al. Fusogenic membrane glycoproteins induce syncytia formation and death in vitro and in vivo: a potential therapy agent for lung cancer. Cancer Gene Ther 2010; 17: 256–265.

    Article  CAS  PubMed  Google Scholar 

  33. Lamfers MLM, Gianni D, Tung C-H, Idema S, Schagen FHE, Carette JE et al. Tissue inhibitor of metalloproteinase-3 expression from an oncolytic adenovirus inhibits matrix metalloproteinase activity in vivo without affecting antitumor efficacy in malignant glioma. Cancer Res 2005; 65: 9398–9405.

    Article  CAS  PubMed  Google Scholar 

  34. Fang L, Pu Y-Y, Hu X-C, Sun L-J, Luo H-M, Pan S-K et al. Antiangiogenesis gene armed tumor-targeting adenovirus yields multiple antitumor activities in human HCC xenografts in nude mice. Hepatol Res 2010; 40: 216–228.

    Article  CAS  PubMed  Google Scholar 

  35. He X-P, Su C-Q, Wang X-H, Pan X, Tu Z-X, Gong Y-F et al. E1B-55kD-deleted oncolytic adenovirus armed with canstatin gene yields an enhanced anti-tumor efficacy on pancreatic cancer. Cancer Lett 2009; 285: 89–98.

    Article  CAS  PubMed  Google Scholar 

  36. Yoo JY, Kim J-H, Kwon Y-G, Kim E-C, Kim NK, Choi HJ et al. VEGF-specific short hairpin RNA-expressing oncolytic adenovirus elicits potent inhibition of angiogenesis and tumor growth. Mol Ther: J Am Soc Gene Ther 2007; 15: 295–302.

    Article  CAS  Google Scholar 

  37. Zhang Z, Zou W, Wang J, Gu J, Dang Y, Li B et al. Suppression of tumor growth by oncolytic adenovirus-mediated delivery of an antiangiogenic gene, soluble Flt-1. Mol Ther: J Am Soc Gene Ther 2005; 11: 553–562.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B Bancel for precious technical assistance in immunohistochemistry, L Fanchi for his assistance with photography and Drs L Depaepe, F Ragage, S Isaac and A Vasiljevic for providing the human samples and for their help with interpreting histological sections. FD was supported by the Fondation René Touraine (France) and the Institut Servier (France), RCH and DKL were supported by the European Union through the 6th Framework Program GIANT (Contract No. 512087) and MRC was supported by a Contrat d’Interface grant from the Hospices Civils de Lyon (France) and by a grant from La Ligue Contre le Cancer (France).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R C Hoeben or M Rosa-Calatrava.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durupt, F., Koppers-Lalic, D., Balme, B. et al. The chicken chorioallantoic membrane tumor assay as model for qualitative testing of oncolytic adenoviruses. Cancer Gene Ther 19, 58–68 (2012). https://doi.org/10.1038/cgt.2011.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.68

Keywords

This article is cited by

Search

Quick links