Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Antiangiogenic systemic gene therapy combined with doxorubicin administration induced caspase 8 and 9-mediated apoptosis in endothelial cells and an anti-metastasis effect

Abstract

Ad-PPE-Fas-c is an adenovector that expresses Fas-c under the control of the modified pre-proendothelin-1 (PPE-1) promoter. Fas-c is a chimeric death receptor containing the extracellular portion of tumour necrosis factor 1 receptor (TNFR1) and the transmembrane and intracellular portion of Fas. We recently demonstrated that Ad-PPE-Fas-c induced Fas-receptor-mediated endothelial cell apoptosis. Previously, doxorubicin was shown to enhance Fas-receptor clustering and the induction of its cascade. Therefore, the goal of this work was to test whether doxorubicin augments the capacity of Ad-PPE-Fas-c to induce endothelial cell apoptosis and to elucidate whether either the death-receptor-mediated apoptotic cascade or the mitochondria-associated apoptotic cascade is involved in the combined treatment effect. We found that a combined treatment of Ad-PPE-Fas-c and doxorubicin synergistically induced a reduction in endothelial cell viability and apoptosis. z-IETD-FMK, a caspase-8 inhibitor, and z-LEHD-FMK, a caspase-9 inhibitor, significantly decreased apoptosis induced by the combined treatment. Systemically administered combined therapy significantly reduced the lung metastases burden (70%) in mice as compared to each treatment alone. Thus, a combined treatment of Ad-PPE-Fas-c gene therapy and chemotherapy may be effective in the treatment of metastatic diseases and both the Fas cascade and the mitochondria-associated cascade are essential for this effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Sivridis E, Giatromanolaki A, Koukourakis MI . The vascular network of tumours—what is it not for? J Pathol 2003; 201: 173–180.

    Article  PubMed  Google Scholar 

  2. Boldin MP, Varfolomeev EE, Pancer Z, Mett IL, Camonis JH, Wallach D . A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem 1995; 270: 7795–7798.

    Article  CAS  PubMed  Google Scholar 

  3. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM . FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995; 81: 505–512.

    Article  CAS  PubMed  Google Scholar 

  4. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995; 14: 5579–5588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Muzio M, Chinnaiyan AM, Kischkel FC, O′Rourke K, Shevchenko A, Ni J et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death—inducing signaling complex. Cell 1996; 85: 817–827.

    Article  CAS  PubMed  Google Scholar 

  6. Laurent G, Jaffrezou JP . Signaling pathways activated by daunorubicin. Blood 2001; 98: 913–924.

    Article  CAS  PubMed  Google Scholar 

  7. Khatib AM, Kontogiannea M, Fallavollita L, Jamison B, Meterissian S, Brodt P . Rapid induction of cytokine and E-selectin expression in the liver in response to metastatic tumor cells. Cancer Res 1999; 59: 1356–1361.

    CAS  PubMed  Google Scholar 

  8. Wang X . The expanding role of mitochondria in apoptosis. Genes Dev 2001; 15: 2922–2933.

    CAS  PubMed  Google Scholar 

  9. Stennicke HR, Jurgensmeier JM, Shin H, Deveraux Q, Wolf BB, Yang X et al. Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 1998; 273: 27084–27090.

    Article  CAS  PubMed  Google Scholar 

  10. Greenberger S, Shaish A, Varda-Bloom N, Levanon K, Breitbart E, Goldberg I et al. Transcription-controlled gene therapy against tumor angiogenesis. J Clin Invest 2004; 113: 1017–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Varda-Bloom N, Shaish A, Gonen A, Levanon K, Greenbereger S, Ferber S et al. Tissue-specific gene therapy directed to tumor angiogenesis. Gene Ther 2001; 8: 819–827.

    Article  CAS  PubMed  Google Scholar 

  12. Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT . Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J Biol Chem 1999; 274: 7987–7992.

    Article  CAS  PubMed  Google Scholar 

  13. Lin T, Zhang L, Davis J, Gu J, Nishizaki M, Ji L et al. Combination of TRAIL gene therapy and chemotherapy enhances antitumor and antimetastasis effects in chemosensitive and chemoresistant breast cancers. Mol Ther 2003; 8: 441–448.

    Article  CAS  PubMed  Google Scholar 

  14. Quesada AJ, Nelius T, Yap R, Zaichuk TA, Alfranca A, Filleur S et al. In vivo upregulation of CD95 and CD95 L causes synergistic inhibition of angiogenesis by TSP1 peptide and metronomic doxorubicin treatment. Cell Death Differ 2005; 12: 649–658.

    Article  CAS  PubMed  Google Scholar 

  15. Chou TC, Talalay P . Generalized equations for the analysis of inhibitions of Michaelis–Menten and higher-order kinetic systems with two or more mutually exclusive and nonexclusive inhibitors. Eur J Biochem 1981; 115: 207–216.

    Article  CAS  PubMed  Google Scholar 

  16. Chou TC, Talalay P . Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  PubMed  Google Scholar 

  17. Stripecke R, Carmen Villacres M, Skelton D, Satake N, Halene S, Kohn D . Immune response to green fluorescent protein: implications for gene therapy. Gene Ther 1999; 6: 1305–1312.

    Article  CAS  PubMed  Google Scholar 

  18. Sawyer DB, Fukazawa R, Arstall MA, Kelly RA . Daunorubicin-induced apoptosis in rat cardiac myocytes is inhibited by dexrazoxane. Circ Res 1999; 84: 257–265.

    Article  CAS  PubMed  Google Scholar 

  19. Kalyanaraman B, Perez-Reyes E, Mason RP . Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs. Biochim Biophys Acta 1980; 630: 119–130.

    Article  CAS  PubMed  Google Scholar 

  20. Kotamraju S, Konorev EA, Joseph J, Kalyanaraman B . Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species. J Biol Chem 2000; 275: 33585–33592.

    Article  CAS  PubMed  Google Scholar 

  21. Wang L, Ma W, Markovich R, Chen JW, Wang PH . Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ Res 1998; 83: 516–522.

    Article  CAS  PubMed  Google Scholar 

  22. Nakamura T, Ueda Y, Juan Y, Katsuda S, Takahashi H, Koh E . Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: in vivo study. Circulation 2000; 102: 572–578.

    Article  CAS  PubMed  Google Scholar 

  23. Kataoka T, Schroter M, Hahne M, Schneider P, Irmler M, Thome M . FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and gamma irradiation. J Immunol 1998; 161: 3936–3942.

    CAS  PubMed  Google Scholar 

  24. Lorenzo E, Ruiz-Ruiz C, Quesada AJ, Hernandez G, Rodriguez A, Lopez-Rivas A et al. Doxorubicin induces apoptosis and CD95 gene expression in human primary endothelial cells through a p53-dependent mechanism. J Biol Chem 2002; 277: 10883–10892.

    Article  CAS  PubMed  Google Scholar 

  25. Cory S, Adams JM . The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002; 2: 647–656.

    Article  CAS  PubMed  Google Scholar 

  26. Cowling V, Downward J . Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ 2002; 9: 1046–1056.

    Article  CAS  PubMed  Google Scholar 

  27. Kuo CJ, Farnebo F, Yu EY, Christofferson R, Swearingen RA, Carter R et al. Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer. Proc Natl Acad Sci USA 2001; 98: 4605–4610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boehm T, Folkman J, Browder T, O′Reilly MS . Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997; 390: 404–407.

    Article  CAS  PubMed  Google Scholar 

  29. O’Reilly MS, Holmgren L, Chen C, Folkman J . Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 1996; 2: 689–692.

    Article  PubMed  Google Scholar 

  30. Denekamp J . Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br J Radiol 1993; 66: 181–196.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Harats.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peled, M., Shaish, A., Greenberger, S. et al. Antiangiogenic systemic gene therapy combined with doxorubicin administration induced caspase 8 and 9-mediated apoptosis in endothelial cells and an anti-metastasis effect. Cancer Gene Ther 15, 535–542 (2008). https://doi.org/10.1038/cgt.2008.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.20

Keywords

This article is cited by

Search

Quick links