Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Skeletal myogenic potential of human and mouse neural stem cells

Abstract

Distinct cell lineages established early in development are usually maintained throughout adulthood. Thus, adult stem cells have been thought to generate differentiated cells specific to the tissue in which they reside. This view has been challenged; for example, neural stem cells can generate cells that normally originate from a different germ layer. Here we show that acutely isolated and clonally derived neural stem cells from mice and humans could produce skeletal myotubes in vitro and in vivo, the latter following transplantation into adult animals. Myogenic conversion in vitro required direct exposure to myoblasts, and was blocked if neural cells were clustered. Thus, a community effect between neural cells may override such myogenic induction. We conclude that neural stem cells, which generate neurons, glia and blood cells, can also produce skeletal muscle cells, and can undergo various patterns of differentiation depending on exposure to appropriate epigenetic signals in mature tissues.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of myocytes/myotubes from clonally derived adult neural stem cells.
Figure 2: Inhibition of myogenic conversion in clustered ANSCs.
Figure 3: Clonally derived stem cells from adult mouse CNS differentiate in vivo into muscle fibers.
Figure 4: Human embryonic neural stem cells undergo myogenic conversion in vitro and in vivo.

Similar content being viewed by others

References

  1. Faust, C & Magnuson, T. Genetic control of gastrulation in the mouse. Curr. Opin. Genet. Dev. 3, 491–498 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Fuchs, E. & Segre, J. A. Stem cells: a new lease on life. Cell 100, 143–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Bjornson, C. R. R., Rietze, R. L., Reynolds, B. A., Magli, M. C. & Vescovi, A. L. Turning brain into blood: adult neural stem cells adopt a hematopoietic fate in vivo. Science 283, 534–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Clarke, D. et al. Generalized potential of adult neural stem cells. Science 288, 1660–1663 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Ferrari, G. et al. Muscle regeneration by bone-marrow-derived myogenic progenitor. Science 279, 1528–1530 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Gussoni, E. et al. Laminin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390–394 (1999).

    CAS  PubMed  Google Scholar 

  8. Jackson, K. A, Mi, T. & Goodell, M. A. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc. Natl. Acad. Sci. USA 96, 14482–14486 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Petersen, B. E. et al. Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Kopen, G. C., Prockop, D. J. & Phinney, D. G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. USA 96, 10711–10716 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johansson, C. B. et al. Identification of a neural stem cell in the adult mammalian central nervous system Cell 96, 25–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Kelly, R., Alonso, S. Tajbakhsh, S., Cossu, G. & Buckingham, M. Myosin light chain 3F regulatory sequences confer regionalised cardiac and skeletal muscle expression in transgenic mice. J. Cell Biol. 129, 383–396 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Patapoutian, A. et al. Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development 121, 3347–3358 (1995).

    CAS  PubMed  Google Scholar 

  15. Tajbakhsh, S. et al. A population of myogenic cells derived from the mouse neural tube. Neuron 13, 813–821 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Daubas, P. et al. Myf5 is a novel early axonal in the mouse brain and is subjected to post-transcriptional regulation in neurons. Development 127, 319–331 (2000).

    CAS  PubMed  Google Scholar 

  17. McKay, R. Stem cells in the central nervous system. Science 276, 66–71 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Loeffler, M. & Potten, C. S. in Stem Cells (ed. Potten, C. S.) 1–27 (Academic, Cambridge, 1997).

    Book  Google Scholar 

  19. Temple, S. & Alvarez-Buylla, A. Stem cells in the adult mammalian central nervous system. Curr. Opin. Neurobiol. 9, 135–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Gritti, A. et al. Epidermal growth factor and fibroblast growth factor act as redundant mitogenic regulators for the same multipotent stem cell population from the adult mouse subventricular region. J. Neurosci. 19, 3287–3297 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beauchamp, J. R., Morgan, J. E., Pagel, C. N. & Partridge, T. A. Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J. Cell Biol. 144, 1113–1122 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johansson, C. B., Svensson, M., Wallstedt, L., Janson, A. M. & Frisen, J. Neural stem cells in the adult human brain. Exp. Cell Res. 253, 733–736 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Vescovi, A. L. et al. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp. Neurol. 156, 71–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Eguchi, G. & Kodama, R. Transdifferentiation. Curr. Opin. Cell Biol. 5, 1023–1028 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Beresford, W. A. Direct transdifferentiation: can cells change their phenotype without dividing? Cell Differ. Dev. 29, 81–93 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Moore, M. A. “Turning brain into blood”—Clinical applications of stem-cell research in neurobiology and hematology. N. Engl. J. Med. 341, 605–607 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the EEC (Grants QLRT000894, QLRT-1999-31471), the Italian Telethon Foundation, the Spinal Cord Society (MN) (A.L.V.) and the Fondazione Pasteur-Cenci Bolognetti (G.C.). We thank Don Ward for help with the English.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giulio Cossu or Angelo L. Vescovi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galli, R., Borello, U., Gritti, A. et al. Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 3, 986–991 (2000). https://doi.org/10.1038/79924

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79924

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing