Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Specific protection against breast cancers by cyclin D1 ablation

Abstract

Breast cancer is the most common malignancy among women. Most of these cancers overexpress cyclin D1, a component of the core cell-cycle machinery. We previously generated mice lacking cyclin D1 using gene targeting. Here we report that these cyclin D1-deficient mice are resistant to breast cancers induced by the neu and ras oncogenes. However, animals lacking cyclin D1 remain fully sensitive to other oncogenic pathways of the mammary epithelium, such as those driven by c-myc or Wnt-1. Our analyses revealed that, in mammary epithelial cells, the Neu–Ras pathway is connected to the cell-cycle machinery by cyclin D1, explaining the absolute dependency on cyclin D1 for malignant transformation in this tissue. Our results suggest that an anti-cyclin D1 therapy might be highly specific in treating human breast cancers with activated Neu–Ras pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analyses of mammary glands.
Figure 2: The occurrence of breast cancers in cyclin D1+/+ and cyclin D1-/- transgenic mice.
Figure 3: Levels of D-cyclins in tumours.
Figure 4: Malignant transformation of cyclin D1-/- cells by Ras and Neu.

Similar content being viewed by others

References

  1. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  Google Scholar 

  2. Dickson, C. et al. Amplification of chromosome band 11q13 and a role for cyclin D1 in human breast cancer. Cancer Lett. 90, 43–50 (1995).

    Article  CAS  Google Scholar 

  3. Bartkova, J. et al. Cyclin D1 protein expression and function in human breast cancer. Int. J. Cancer 57, 353–361 (1994).

    Article  CAS  Google Scholar 

  4. Gillett, C. et al. Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res. 54, 1812–1817 (1994).

    CAS  PubMed  Google Scholar 

  5. McIntosh, G. G. et al. Determination of the prognostic value of cyclin D1 overexpression in breast cancer. Oncogene 11, 885–891 (1995).

    CAS  PubMed  Google Scholar 

  6. Weinstat-Saslow, D. et al. Overexpression of cyclin D mRNA distinguishes invasive and in situ breast carcinomas from non-malignant lesions. Nature Med. 1, 1257–1260 (1995).

    Article  CAS  Google Scholar 

  7. Gillett, C. et al. Cyclin D1 and prognosis in human breast cancer. Int. J. Cancer 69, 92–99 (1996).

    Article  CAS  Google Scholar 

  8. Wang, T. C. et al. Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369, 669–671 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Sicinski, P. et al. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82, 621–630 (1995).

    Article  CAS  Google Scholar 

  10. Fantl, V., Stamp, G., Andrews, A., Rosewell, I. & Dickson, C. Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 9, 2364–2372 (1995).

    Article  CAS  Google Scholar 

  11. Sinn, E. et al. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49, 465–475 (1987).

    Article  CAS  Google Scholar 

  12. Muller, W. J., Sinn, E., Pattengale, P. K., Wallace, R. & Leder, P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54, 105–115 (1988).

    Article  CAS  Google Scholar 

  13. Stewart, T. A., Pattengale, P. K. & Leder, P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38, 627–637 (1984).

    Article  CAS  Google Scholar 

  14. Tsukamoto, A. S., Grosschedl, R., Guzman, R. C., Parslow, T. & Varmus, H. E. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55, 619–625 (1988).

    Article  CAS  Google Scholar 

  15. Rimerman, R. A., Gellert-Randleman, A. & Diehl, J. A. Wnt1 and MEK1 cooperate to promote cyclin D1 accumulation and cellular transformation. J. Biol. Chem. 275, 14736–14742 (2000).

    Article  CAS  Google Scholar 

  16. Tetsu, O. & McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Sicinski, P. et al. Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 384, 470–474 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Ball, R. K., Friis, R. R., Schoenenberger, C. A., Doppler, W. & Groner, B. Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. EMBO J. 7, 2089–2095 (1988).

    Article  CAS  Google Scholar 

  19. Lukas, J. et al. Cyclin D2 is a moderately oscillating nucleoprotein required for G1 phase progression in specific cell types. Oncogene 10, 2125–2134 (1995).

    CAS  PubMed  Google Scholar 

  20. Janes, P. W., Daly, R. J., de Fazio, A. & Sutherland, R. L. Activation of the Ras signaling pathway in human breast cancer cells overexpressing erbB-2. Oncogene 9, 3601–3608 (1994).

    CAS  PubMed  Google Scholar 

  21. Filmus, J. et al. Induction of Cyclin D1 overexpression by activated ras. Oncogene 9, 3627–3633 (1994).

    CAS  Google Scholar 

  22. Albanese, C. et al. Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem. 270, 23589–23597 (1995).

    Article  CAS  Google Scholar 

  23. Liu, J. J. et al. Ras transformation results in an elevated level of cyclin D1 and acceleration of G1 progression in NIH 3T3 cells. Mol. Cell. Biol. 15, 3654–3663 (1995).

    Article  CAS  Google Scholar 

  24. Lavoie, J. N., L’Allemain, G., Brunet, A., Mueller, R. & Pouyssegur, J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem. 271, 20608–20616 (1996).

    Article  CAS  Google Scholar 

  25. Lee, R. J. et al. Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol. Cell. Biol. 20, 672–683 (2000).

    Article  CAS  Google Scholar 

  26. Geng, Y. et al. Rescue of cyclin D1 deficiency by knockin cyclin E. Cell 97, 767–777 (1999).

    Article  CAS  Google Scholar 

  27. Alevizopoulos, K., Vlach, J., Hennecke, S. & Amati, B. Cyclin E and c-Myc promote cell proliferation in the presence of p16INK4a and of hypophosphorylated retinoblastoma family proteins. EMBO J. 16, 5322–5333 (1997).

    Article  CAS  Google Scholar 

  28. Santoni-Rugiu, E., Falck, J., Mailand, N., Bartek, J. & Lukas, J. Involvement of Myc activity in a G1/S-promoting mechanism parallel to the pRb/E2F pathway. Mol. Cell. Biol. 20, 3497–3509 (2000).

    Article  CAS  Google Scholar 

  29. Robles, A. I. et al. Reduced skin tumor development in cyclin D1-deficient mice highlights the oncogenic ras pathway in vivo. Genes Dev. 12, 2469–2474 (1998).

    Article  CAS  Google Scholar 

  30. Bieche, I. & Lidereau, R. Genetic alterations in breast cancer. Genes Chromosom. Cancer 14, 227–251 (1995).

    Article  CAS  Google Scholar 

  31. Bargmann, C. I., Hung, M. C. & Weinberg, R. A. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45, 649–657 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Bronson, M. Ciemerych, L. Le Cam, B. Elenbaas, A. Leder, S. Jean, M. Lee, M. Mann, T. Mäkelä, B. Rollins and R. A. Weinberg for help; P. Leder for SH1.1 and 13Ma1a cell lines; J. Direnzo and M. Brown for the HC11 cell line; and R. A. Weinberg for pBabe-puro-Ras-V12 and pSVNeuT plasmids. This work was supported by a grant from NIH and by the DOD Breast Cancer Idea Award to P.S. Y.G. is partly supported by the NCI SPORE in Breast Cancer at the DFCI/Harvard Medical School. P.S. is a Barr New Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Sicinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Q., Geng, Y. & Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature 411, 1017–1021 (2001). https://doi.org/10.1038/35082500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35082500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing