Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA endoreduplication and polyteny understood as evolutionary strategies

Abstract

DNA endoreduplication and related phenomena (such as endomitosis, polyteny, nuclear restitution and somatic polyploidy in general) are widespread over the animal and plant kingdoms, although they occur most frequently among insects and angiosperms1–3. The systematic restriction to certain phyla and species has been interpreted in terms of high genetic control of such events3, whereas the characteristic developmental pattern of various degrees of endopolyploidy has been considered as an expression of their functional role in differentiation and synthesising capacity of the cells2,4,5. Recently,however, any role of endoreduplication in cell differentiation has been questioned because of the existence of species apparently lacking endopolyploidy6. All previous discussions on endoreduplication, endopolyploidy and polyteny have, however, ignored the basic DNA contents of the species studied. We here report a relationship between the basic nuclear DNA content and the occurrence and degree of endopolyploidy. This strongly suggests that DNA endoreduplication can be regarded as an evolutionary alternative to the high nuclear DNA content that has been achieved in other species mainly by ‘saltatory replications’.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Geitler, L., Endomitose und endomitotische PolyPloidisierung (Springer, Vienna and New York, 1953).

    Book  Google Scholar 

  2. D'Amato, F., Caryologia 17, 41–52 (1964).

    Article  Google Scholar 

  3. Tschermak-Woess, E., in Handb. Allgem. Pathol., 2/1/2 (edit. by Altmann, H.-W.), 569–625 (Springer, Berlin, Heidelberg, New York, 1971).

    Google Scholar 

  4. Nagl, W., Chromosomes Today, 3, 17–23 (1972).

    Google Scholar 

  5. Nagl, W., A. Rev. Pl. Physiol., 27, 39–69 (1976).

    Article  CAS  Google Scholar 

  6. Evans, L. S., and Van't Hof, J., Am. J. Bot., 62, 1060–1064 (1975).

    Article  Google Scholar 

  7. Britten, R. J., and Davidson, E. H., Q. Rev. Biol., 46, 111–138 (1971).

    Article  CAS  Google Scholar 

  8. Nagl, W., Zellkern und Zellzyklen (Ulmer, Stuttgart, 1976).

  9. Nagl, W., Prog. Bot., 37, 186–210 (1975).

    Google Scholar 

  10. Lima-de-Faria, A., Cold Spring Harb. Symp. quant. Biol., 38, 559–571 (1974).

    Article  CAS  Google Scholar 

  11. Britten, R. J., and Kohne, D. E., Science, 161, 529–540 (1968).

    Article  ADS  CAS  Google Scholar 

  12. Flavell, R. B., Bennett, M. D., Smith, J. B., and Smith, D. B., Biochem. Genet., 12, 257–279 (1974).

    Article  CAS  Google Scholar 

  13. Gottschalk, W., Die Bedeutung der Polyploidie für die Evolution der Pflanzen (G. Fischer, Stuttgart, 1976).

    Google Scholar 

  14. Lewis, K. R., The Nucleus, 10, 99–110 (1967).

    Google Scholar 

  15. Murray, B. G., and Williams, C. A., Nature, 243, 87–88 (1973).

    Article  ADS  CAS  Google Scholar 

  16. DeMaggio, A. E., and Lambrukos, J., Biochem. Genet., 12, 429–440 (1974).

    Article  CAS  Google Scholar 

  17. Guern, M., Bourdu, R., and Roux, M., Photosynthetica, 9, 40–51 (1975).

    Google Scholar 

  18. Sparrow, A. H., and Nauman, A. F., Brookhaven Symp. Biol., 25, 367–389 (1973).

    Google Scholar 

  19. Ehrendorfer, F., Taxon, 19, 185–195 (1970).

    Article  Google Scholar 

  20. Van't Hof, J., Expl Cell. Res., 39, 48–58 (1965).

    Article  CAS  Google Scholar 

  21. Bennett, M. D., Proc. R. Soc., B 181, 109–135 (1972).

    ADS  CAS  Google Scholar 

  22. Rees, H., and Jones, R. N., Int. Rev. Cytol., 32, 53–92 (1972).

    Article  CAS  Google Scholar 

  23. Sparrow, A. H., Proce, H. J., and Underbrink, A. G., Brookhaven Symp. Biol., 23, 451–494 (1972).

    CAS  PubMed  Google Scholar 

  24. Bachmann, K., Goin, O. B., and Goin, C. J., Brookhaven Symp. Biol., 23, 419–450 (1972).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

NAGL, W. DNA endoreduplication and polyteny understood as evolutionary strategies. Nature 261, 614–615 (1976). https://doi.org/10.1038/261614a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/261614a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing