Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyclooxygenase-2-dependent arachidonic acid metabolites are essential modulators of the intestinal immune response to dietary antigen

Abstract

Intestinal inflammatory diseases are mediated by dysregulated immune responses to undefined luminal antigens. Feeding hen egg-white lysozyme to mice expressing a transgenic T-cell receptor that recognizes hen egg-white lysozyme peptide 46–61 resulted in no intestinal pathology; however, simultaneous administration of cyclooxygenase-2 inhibitors and dietary hen egg-white lysozyme resulted in increased proliferation of lamina propria mononuclear cells and crypt epithelial cells, crypt expansion and villus blunting. Lamina propria mononuclear cells produce high levels of cyclooxygenase-2-dependent arachidonic acid metabolites, which act as immunomodulators in the immune response to dietary antigen. These findings establish that cyclooxygenase-2-dependent arachidonic acid metabolites are essential in the development and maintenance of intestinal immune homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histologic changes in the proximal small intestines of 3A9 TCRα–/– transgenic mice given indomethacin and oral HEL.
Figure 2: Indomethacin alters the antigen-specific proliferative response of LPMNCs from 3A9 TCRα–/– transgenic mice.
Figure 3: Non-*βTCR+ LPMNCs produce increased levels of PGE2 by a COX-2-dependent pathway.
Figure 4: PGE2 produced by LPMNCs by a COX-2-dependent pathway suppresses antigen-specific proliferation.
Figure 5: Histologic changes in the proximal small intestines of 3A9 TCRα–/– transgenic mice given the selective COX-2 inhibitor NS-398 and oral HEL.

Similar content being viewed by others

References

  1. Strober, W. et al. Reciprocal IFN-gamma and TGF-beta responses regulate the occurrence of mucosal inflammation. Immunol. Today 18, 61–64 (1997).

    Article  CAS  Google Scholar 

  2. Powrie, F. T cells in inflammatory bowel disease: protective and pathogenic roles. Immunity 3, 171–174 ( 1995).

    Article  CAS  Google Scholar 

  3. Hurst, S.D., Sitterding, S.M., Ji, S. & Barrett, T.A. Functional differentiation of T cells in the intestine of T cell receptor transgenic mice. Proc. Natl. Acad. Sci. USA 94, 3920– 3925 (1997).

    Article  CAS  Google Scholar 

  4. Schieferdecker, H.L., Ullrich, R., Hirseland, H. & Zeitz, M. T cell differentiation antigens on lymphocytes in the human intestinal lamina propria. J. Immunol. 149, 2816– 2822 (1992).

    CAS  Google Scholar 

  5. Braunstein, J., Qiao, L., Autschbach, F., Schurmann, G. & Meuer, S. T cells of the human intestinal lamina propria are high producers of interleukin-10. Gut 41, 215 –220 (1997).

    Article  CAS  Google Scholar 

  6. Gonnella, P.A. et al. In situ immune response in gut-associated lymphoid tissue (GALT) following oral antigen in TCR-transgenic mice. J. Immunol. 160, 4708–4718 (1998).

    CAS  PubMed  Google Scholar 

  7. Sher, A. et al. Role of T-cell derived cytokines in the downregulation of immune responses in parasitic and retroviral infection. Immunol. Rev. 127, 183–204 ( 1992).

    Article  CAS  Google Scholar 

  8. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737– 742 (1997).

    Article  CAS  Google Scholar 

  9. Parronchi, P. et al. Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn's disease. Am. J. Pathol. 150, 823–832 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nilsen, E.M. et al. Gluten induces an intestinal cytokine response strongly dominated by interferon gamma in patients with celiac disease. Gastroenterology 115, 551–563 ( 1998).

    Article  CAS  Google Scholar 

  11. Powrie, F. et al. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1, 553–562 ( 1994).

    Article  CAS  Google Scholar 

  12. Davidson, N.J. et al. T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice. J. Exp. Med. 184, 241–251 (1996).

    Article  CAS  Google Scholar 

  13. Mombaerts, P. et al. Mutations in T-cell antigen receptor genes alpha and beta block thymocyte development at different stages. Nature 360, 225–231 (1992).

    Article  CAS  Google Scholar 

  14. Uematsu, Y. et al. In transgenic mice the introduced functional T cell receptor beta gene prevents expression of endogenous beta genes. Cell 52, 831–841 (1988).

    Article  CAS  Google Scholar 

  15. Ho, W.Y., Cooke, M.P., Goodnow, C.C. & Davis, M.M. Resting and anergic B cells are defective in CD28-dependent costimulation of naive CD4+ T cells. J. Exp. Med. 179, 1539–1549 (1994).

    Article  CAS  Google Scholar 

  16. Abbas, A.K., Murphy, K.M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 ( 1996).

    Article  CAS  Google Scholar 

  17. Mombaerts, P. et al. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell 75, 274– 282 (1993).

    Article  CAS  Google Scholar 

  18. Aabakken, L. & Osnes, M. Non-steroidal anti-inflammatory drug-induced disease in the distal ileum and large bowel. Scand. J. Gastroenterol. Suppl. 163, 48–55 ( 1989).

    Article  CAS  Google Scholar 

  19. Bjarnason, I., Hayllar, J., MacPherson, A.J. & Russell, A.S. Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology 104, 1832–1847 (1993).

    Article  CAS  Google Scholar 

  20. Kaufmann, H.J. & Taubin, H.L. Nonsteroidal anti-inflammatory drugs activate quiescent inflammatory bowel disease. Ann. Intern. Med. 107, 513–516 (1987).

    Article  CAS  Google Scholar 

  21. Demeure, C.E., Yang, L.P., Desjardins, C., Raynauld, P. & Delespesse, G. Prostaglandin E2 primes naive T cells for the production of anti- inflammatory cytokines. Eur. J. Immunol. 27, 3526–3531 (1997).

    Article  CAS  Google Scholar 

  22. Betz, M. & Fox, B.S. Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J. Immunol. 146, 108–113 (1991).

    CAS  PubMed  Google Scholar 

  23. Snijdewint, F.G., Kalinski, P., Wierenga, E.A., Bos, J.D. & Kapsenberg, M.L. Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. J. Immunol. 150, 5321–5329 (1993).

    CAS  PubMed  Google Scholar 

  24. Smith, W.L., Garavito, R.M. & DeWitt, D.L. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J. Biol. Chem. 271, 33157– 33160 (1996).

    Article  CAS  Google Scholar 

  25. Masferrer, J.L. et al. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc. Natl. Acad. Sci. USA 91, 3228–3232 ( 1994).

    Article  CAS  Google Scholar 

  26. Ellner, J.J. & Spagnuolo, P.J. Suppression of antigen and mitogen induced human T lymphocyte DNA synthesis by bacterial lipopolysaccharide: mediation by monocyte activation and production of prostaglandins. J. Immunol. 123, 2689–2695 (1979).

    CAS  PubMed  Google Scholar 

  27. Gutgemann, I., Fahrer, A.M., Altman, J.D., Davis, M.M. & Chien, Y.H. Induction of rapid T cell activation and tolerance by systemic presentation of an orally administered antigen. Immunity 8, 667–673 (1998).

    Article  CAS  Google Scholar 

  28. Snyder, D.S., Beller, D.I. & Unanue, E.R. Prostaglandins modulate macrophage Ia expression. Nature 299, 163–165 (1982).

    Article  CAS  Google Scholar 

  29. Wu, C.Y., Wang, K., McDyer, J.F. & Seder, R.A. Prostaglandin E2 and dexamethasone inhibit IL-12 receptor expression and IL-12 responsiveness. J. Immunol. 161, 2723– 2730 (1998).

    CAS  PubMed  Google Scholar 

  30. Kalinski, P., Hilkens, C.M., Snijders, A., Snijdewint, F.G. & Kapsenberg, M.L. IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J. Immunol. 159, 28–35 (1997).

    CAS  PubMed  Google Scholar 

  31. van der Pouw Kraan, T.C., Boeije, L.C., Smeenk, R.J., Wijdenes, J. & Aarden, L.A. Prostaglandin-E2 is a potent inhibitor of human interleukin 12 production. J. Exp. Med. 181 , 775–779 (1995).

    Article  CAS  Google Scholar 

  32. Morham, S.G., Langenbach, R., Mahler, J. & Smithies, O. Characterization of prostaglandin H synthase 2 deficient mice and implications for mechanisms of NSAID action. Adv. Exp. Med. Biol. 407, 131–138 (1997).

    Article  CAS  Google Scholar 

  33. Murphy, E. et al. Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J. Exp. Med. 183, 901–913 (1996).

    Article  CAS  Google Scholar 

  34. Ziegler-Heitbrock, H.W., Frankenberger, M. & Wedel, A. Tolerance to lipopolysaccharide in human blood monocytes. Immunobiology 193, 217– 223 (1995).

    Article  CAS  Google Scholar 

  35. Freudenberg, M.A. & Galanos, C. Induction of tolerance to lipopolysaccharide (LPS)-D-galactosamine lethality by pretreatment with LPS is mediated by macrophages. Infect. Immun. 56, 1352–1357 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamada, T. et al. Mechanisms of acute and chronic intestinal inflammation induced by indomethacin. Inflammation 17, 641– 662 (1993).

    Article  CAS  Google Scholar 

  37. MacDonald, T.T. & Spencer, J. Evidence that activated mucosal T cells play a role in the pathogenesis of enteropathy in human small intestine. J. Exp. Med. 167, 1341–1349 (1988).

    Article  CAS  Google Scholar 

  38. Ferreira, R.C. et al. Changes in the rate of crypt epithelial cell proliferation and mucosal morphology induced by a T-cell-mediated response in human small intestine. Gastroenterology 98, 1255– 1263 (1990).

    Article  CAS  Google Scholar 

  39. Lionetti, P. et al. T-cell activation can induce either mucosal destruction or adaptation in cultured human fetal small intestine. Gastroenterology 105, 373–381 ( 1993).

    Article  CAS  Google Scholar 

  40. Langenbach, R. et al. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell 83, 483–492 ( 1995).

    Article  CAS  Google Scholar 

  41. Morham, S.G. et al. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 83, 473– 482 (1995).

    Article  CAS  Google Scholar 

  42. Futaki, N. et al. NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglandins 47, 55– 59 (1994).

    Article  CAS  Google Scholar 

  43. Moolenbeek, C. & Ruitenberg, E.J. The "Swiss roll": a simple technique for histological studies of the rodent intestine. Lab. Anim. 15, 57–59 (1981).

    Article  CAS  Google Scholar 

  44. Cohn, S.M., Schloemann, S., Tessner, T., Seibert, K. & Stenson, W.F. Crypt stem cell survival in the mouse intestinal epithelium is regulated by prostaglandins synthesized through cyclooxygenase-1. J. Clin. Invest. 99, 1367 –1379 (1997).

    Article  CAS  Google Scholar 

  45. Kruisbeek, A.M. in Current Protocols in Immunology (eds. Colligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, S.) 3.1.2– 3.1.4 (John Wiley and Sons Inc, New York, 1997).

    Google Scholar 

Download references

Acknowledgements

We thank J. McDonough for technical assistance; and K. Roth, E. Newberry and S. Amadeus for assistance with manuscript preparation. This work was supported by grants from the Charles E. Culpeper Foundation (R.G.L.), the American Digestive Health Foundation FFTA sponsored by Astra Merck (R.D.N.) and NIH grants DK-33165 and DK-55753 (W.F.S.). R.G.L. is a Charles E. Culpeper Foundation Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin G. Lorenz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newberry, R., Stenson, W. & Lorenz, R. Cyclooxygenase-2-dependent arachidonic acid metabolites are essential modulators of the intestinal immune response to dietary antigen. Nat Med 5, 900–906 (1999). https://doi.org/10.1038/11341

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11341

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing