Skip to main content
Log in

Taurine and Its Chloramine: Modulators of Immunity

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Taurine is a semiessential amino acid that is not incorporated into proteins. In mammalian tissues, taurine is ubiquitous and is the most abundant free amino acid in the heart, retina, skeletal muscle, and leukocytes. Taurine reaches up to 50 mM concentration in leukocytes. Taurine has been shown to be tissue-protective in many models of oxidant-induced injury. One possibility is that taurine reacts with HOCl, produced by the myeloperoxidase (MPO) pathway, to produce the more stable but less toxic taurine chloramine (Tau-Cl). However, data from several laboratories demonstrate that Tau-Cl is a powerful regulator of the immune system. Specifically, Tau-Cl has been shown to downregulate the production of proinflammatory mediators in both rodent and human leukocytes. Recent molecular studies on the function of taurine provide evidence that taurine is a constituent of biological macromolecules. Specifically, two novel taurine-containing modified uridines have been found in both human and bovine mitrochondria. In studies on mechanism of action, Tau-Cl inhibits the activation of NFκB, a potent signal transducer for inflammatory cytokines, by oxidation of IκBα at methionine45. Taurine transporter knockout mice show reduced taurine, reduced fertility, and loss of vision resulting from severe retinal degeneration, which was found to be due to apoptosis. Apoptosis induced by amino chloramines is a current and important finding because oxidants derived from leukocytes play a key role in killing pathogens. The fundamental importance of taurine in adaptive and acquired immunity will be revealed using genetic manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Huxtable, R. J. 1992. The physiological actions of taurine. Physiol. Rev. 72:101–163.

    Google Scholar 

  2. Sturman, J. A. 1993. Taurine in development. Physiol. Rev. 73:119–148.

    Google Scholar 

  3. Schuller-Levis, G., Mehta, P. D., Rudelli, R., and Sturman, J. A. 1990. Immunologic consequence of taurine deficiency in cats. J. Leukoc. Biol. 47:321–333.

    Google Scholar 

  4. Fukuda, K., Hirai, Y., Yoshida, H., Hakajima, T., and Usii, T. 1982. Free-amino acid content of lymphocytes and granulocytes compared. Clin. Chem. 28:1758–1761.

    Google Scholar 

  5. Parcell, S. 2002. Sulfur in human nutrition and applications in medicine. Altern. Med. Rev. 7:22–44.

    Google Scholar 

  6. Schuller-Levis, G., Mehta, P. D., Rudelli, R., and Sturman, J. 1990. Immunologic consequences of taurine deficiency in cats. J. Leukoc. Biol. 47:321–331.

    Google Scholar 

  7. Gordon, R. E., Shaked, A. A., and Solano, D. F. 1986. Taurine protects hamster bronchioles from acute NO2-induced alterations. Am. J. Pathol. 125:585–600.

    Google Scholar 

  8. Giri, S. N., Biring, I., Nguyen, T., Wang, G., and Hyde, D. M. 2002. Abrogation of bleomycin-induced lung fibrosis by nitric oxide synthase inhibitor, aminoguanidine in mice. Nitric Oxide 7:109–118.

    Google Scholar 

  9. Wang, Q., Giri, S. N., Hyde, D. M., and Li, C. 1991. Amelioration of bleomycin-induced pulmonary fibrosis in hamsters by combined treatment with taurine and niacin. Biochem. Pharmacol. 42:1115–1122.

    Google Scholar 

  10. Gordon, R. E. and Heller, R. F. 1992. Taurine protection of lungs in hamster models of oxidant injury: A morphological time study of paraquat and bleomycin treatment. Pages 319–328, in Lombardini, J. B. (ed.), Taurine. New York: Plenum Press.

    Google Scholar 

  11. Schuller-Levis, G., Quinn, M. R., Wright, C., and Park, E., 1994. Taurine protects against oxidant-induced lung injury: Possible mechanism(s) of action. Adv. Exp. Med. Biol. 359:31–39.

    Google Scholar 

  12. Schuller-Levis, G., Gordon, R. E., Wang, C., and Park, E. 2003 Taurine reduces lung inflammation and fibrosis caused by bleomycin. Adv. Exp. Med. Biol. 526:395–402.

    Google Scholar 

  13. Abdih, H., Kelly, C. J., Bouchier-Hayes, D., Barry, M., and Kearns, S. 2000. Taurine prevents interleukin-2-induced acute lung injury in rats. Eur. Surg. Res. 32:347–352.

    Google Scholar 

  14. Egan, B. M., Abdih, H., Kelly, C. J., Condron, C., and Bouchier-Hayes, D. J. 2001. Effect of intravenous taurine on endotoxin-induced acute lung injury in sheep. Eur. J. Surg. 167:575–580.

    Google Scholar 

  15. Huat, A. and Hacker, M. 1990. Role of reactive nitrogen intermediate production in alveolar macrophage mediated cytostatic activity induced by bleomycin lung damage in rats. Cancer Res. 50:7863–7866.

    Google Scholar 

  16. Vanhee, D., Delneste, Y., Lassalle, P., Gosset, P., Joseph, M., and Tonnel, A.B. 1994. Modulations of endothial cell adhesion molecule expression in a situation of chronic inflammatory stimulation. Cell. Immunol. 155:446–456.

    Google Scholar 

  17. Grisham, M. B., Jefferson, M. M., Melton, D. F., and Thomas, E. L. 1984. Chlorination of endogenous amines by isolated neutrophils. J. Biol. Chem. 259:10404–10413.

    Google Scholar 

  18. Weiss, S. J. R., Klein, A., Slivka, A., and Wei, M. 1982. Chlorination of taurine by human neutrophils: Evidence for hypochlorous acid generation. J. Clin. Invest. 70:598–607.

    Google Scholar 

  19. Park, E., Quinn, M. R., Wright, C. E., and Schuller-Levis, G. 1993. Taurine chloramine inhibits the synthesis of nitric oxide and the release of tumor necrosis factor in activated RAW 264.7 cells. J. Leukoc. Biol. 54:119–124.

    Google Scholar 

  20. Park, E., Schuller-Levis, G., and Quinn, M. R. 1995. Taurine chloramine inhibits production of nitric oxide and TNF-α in activated RAW 264.7 cells by mechanisms that involve transcriptional and translational events. J. Immunol. 154: 4778–4784.

    Google Scholar 

  21. Quinn, M. R., Park, E., and Schuller-Levis, G. 1996. Taurine chloramine inhibits prostaglandin E2 production in activated RAW 264.7 cells by post-transcriptional effects on inducible cyclooxygenase expression. Immunol. Lett. 50:185–188.

    Google Scholar 

  22. Marcinkiewicz, J., Grabowska, A., Bereta, J., and Stelmaszynska, T. 1995. Taurine chloramine, a product of activated neutrophils, inhibits in vitro the generation of nitric oxide and other macrophage inflammatory mediators. J. Leukoc. Biol. 58:667–674.

    Google Scholar 

  23. Park, E., Alberti, J., Quinn, M. R., and Schuller-Levis, G. 1998. Taurine chloramine inhibits production of superoxide anion, IL-6 and IL-8 in activated human polymorphonuclear leukocytes. Adv. Exp. Med. Biol. 442:177–182.

    Google Scholar 

  24. Park, E., Jia, J.-H., Quinn, M. R., and Schuller-Levis, G. 2002. Taurine chloramine inhibits lymphocyte proliferation and decreases cytokine production in activated human leukocytes. Clin. Immunol. 102:179–184.

    Google Scholar 

  25. Choray, M., Kontny, E., Marcinkiewicz, J., and Maslinski, W. 2002. Taurine chloramine modulates cytokine production by human peripheral blood mononuclear cells. Amino Acids 23:407–441.

    Google Scholar 

  26. Marcinkiewicz, J., Nowak, B., Grabowska, A., Bobek, M., Petrovska, L., and Chain, B. 1999. Regulation of murine dendritic cell functions in vitro by taurine chloramine, a major product of the neutrophil myeloperoxidase-halide system. Immunol. 98:371–378.

    Google Scholar 

  27. Park, E., Schuller-Levis, G., Jin, H., and Quinn, M. R. 1997. Preactivation exposure of RAW 264.7 cells to taurine chloramine attenuates subsequent production of nitric oxide and expression of iNOS in RNA. J. Leukoc. Biol. 61:161–166.

    Google Scholar 

  28. Englert, R. P. and Shacter, E. 2002. Distinct modes of cell death induced by different reactive oxygen species. J. Biol. Chem. 277:20518–20526.

    Google Scholar 

  29. Kwasny-Krochin, B., Bobek, M., Kontny, E., Gluszko, P., Biedron, R., Chain, B. M., Maslinski, W., and Marcinkiewicz, J. 2002. Effect of taurine chloramine, the product of activated neu-trophils, on the development of collagen-induced arthritis in DBA 1/J mice. Amino Acids 23:419–426.

    Google Scholar 

  30. Ibrahim, S. M., Koczan, D., and Thiesen, H. J. 2002. Gene-expression profile of collagen-induced arthritis. J. Autoimmune 18:159–167.

    Google Scholar 

  31. Kontny, E., Szczepanska, K., Kowalczewski, J., Kurowska, M., Janicka, I., Marcinkiewicz, J., and Maslinski, W. 2000. The mechanism of taurine chloramine inhibition of cytokine (interleukin-6, interleukin-8) production by rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheum. 43:2169–2177.

    Google Scholar 

  32. Barua, M., Liu, Y., and Quinn, M. R. 2002. Taurine chloramine inhibits inducible nitric oxide synthase and TNF-α gene expression in activated alveolar macrophages: Decreased NF-ξB activation and IξB kinase activity. J. Immunol. 167:2275–2281.

    Google Scholar 

  33. Suzuki, T., Suzuki, T., Wada, T., Saigo, K., and Watanabe, K. 2002. Taurine as a constituent of mitochondrial tRNA: New insights into the functions of taurine and human mitochondrial diseases. EMBO J. 21:6581–6589.

    Google Scholar 

  34. Kanayama, A., Inoue, J., Sugita-Konishi, Y., Shimizu, M., and Miyamoto, Y. 2002. Oxidation of IξBα at methionine 45 is one cause of taurine chloramine-induced inhibition of NF-ξB activation. J. Biol. Chem. 277:24049–24056.

    Google Scholar 

  35. Reymond, I., Sergeant, A., and Tappaz, M. 1996. Molecular cloning and sequence analysis of the cDNA encoding rat liver cysteine sulfinate decarboxylase (CSD). Biochim. Biophys. Acta 1307:152–156.

    Google Scholar 

  36. Kaisaki, P. J., Jerkin, A. A., Goodspeed, D. C., and Steel, R. D. 1995. Cloning and characterization of rat cysteine sulfinic acid decarboxylase. Biochim. Biophys. Acta 1262:79–82.

    Google Scholar 

  37. Park, E., Park, S. Y., Wang, C., Xu, J., LaFauci, G., and Schuller-Levis, G. 2002. Cloning of murine cysteine sulfinic acid decarboxylase and its mRNA expression in murine tissues. Biochim. Biophys. Acta 1574:403–406.

    Google Scholar 

  38. Hosokawa, Y., Matsumoto, A., Oka, J., Itakura, H., and Yamaguchi, K. 1990. Isolation and characterization of a complementary DNA for rat liver cysteine dioxygenase. Biochem. Biophys. Res. Commun. 168:473–478.

    Google Scholar 

  39. Bella, D. L., Kwon, Y. H., Hirschberger, L. L., and Stipanuk, M. H. 2000. Post-transcriptional regulation of cysteine dioxygenase in rat liver. Adv. Exp. Med. Biol. 483:71–85.

    Google Scholar 

  40. Han, X., Budreau, A. M., Chesney, R. W. 2000. Cloning and characterization of the promoter region of the rat taurine transporter (Tau T) gene. Adv. Exp. Med. Biol. 483:97–108.

    Google Scholar 

  41. Patel, A., Rochelle, J. M., Jones, J. M., Sumegi, G., Uhl, G. R., Seldin, M. F., Meisler, M. H., and Gregor, P. 1995. Mapping of the taurine transporter gene to mouse chromosome 6 and to the short arm of human chromosome 3. Genomics 1:314–317.

    Google Scholar 

  42. Mowrey, P. N., Chorney, M. J., Venditti, C. P., Latif, F., Modi, W. S., Lerman, M. I., Zbar, B., Robins, D. B., Rogan, P. K., and Ladda, R. L. 1993. Clinical and molecular analyses of deletion 3p25-pter syndrome. Am. J. Med. Genet 46:623–629.

    Google Scholar 

  43. Heller-Stilb, B., Van Roeyen, C., Rascher, K., Hartwig, H. G., Huth, A., Seeliger, M. W., Warskulat, U., and Haussinger, D. 2002. Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J. 16:231–233.

    Google Scholar 

  44. Han, X., Patters, A. B., and Chesney, R. W. 2002. Transcriptional repression of taurine transporter gene (TauT) by p53 in renal cells. J. Biol. Chem. 277:39266–39273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia B. Schuller-Levis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuller-Levis, G.B., Park, E. Taurine and Its Chloramine: Modulators of Immunity. Neurochem Res 29, 117–126 (2004). https://doi.org/10.1023/B:NERE.0000010440.37629.17

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000010440.37629.17

Navigation